5fl7
From Proteopedia
Structure of the F1c10 complex from Yarrowia lipolytica ATP synthase
Structural highlights
FunctionATPA_YARLI Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:25759169). F-type ATP synthases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk (PubMed:27373333). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (PubMed:27373333). Subunits alpha/ATP1 and beta/ATP2 form the catalytic core in F(1) (PubMed:27373333). Rotation of the central stalk against the surrounding alpha/ATP1(3)beta/ATP2(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta/ATP2 subunits (PubMed:27373333). Subunit alpha/ATP1 does not bear the catalytic high-affinity ATP-binding sites (PubMed:27373333).[1] [2] Publication Abstract from PubMedWe determined the structure of a complete, dimeric F1Fo-ATP synthase from yeast Yarrowia lipolytica mitochondria by a combination of cryo-EM and X-ray crystallography. The final structure resolves 58 of the 60 dimer subunits. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Subunit 8 (A6L in human) is an evolutionary derivative of the bacterial b subunit. On the lumenal membrane surface, subunit f establishes direct contact between the two monomers. Comparison with a cryo-EM map of the F1Fo monomer identifies subunits e and g at the lateral dimer interface. They do not form dimer contacts but enable dimer formation by inducing a strong membrane curvature of approximately 100 degrees . Our structure explains the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology. Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology.,Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, Kuhlbrandt W, Meier T Mol Cell. 2016 Jun 29. pii: S1097-2765(16)30223-4. doi:, 10.1016/j.molcel.2016.05.037. PMID:27373333[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|