5lkq
From Proteopedia
Protease domain of RadA
Structural highlights
FunctionRADA_STRR6 Plays a role in repairing double-strand DNA breaks, probably involving stabilizing or processing branched DNA or blocked replication forks (By similarity). Required for efficient transformation with chromosomal (linear) DNA, but not for replicative plasmid DNA. Its increased sensitivity to a DNA damaging agent suggests it may be required for DNA repair (PubMed:17631629).[HAMAP-Rule:MF_01498][1] Publication Abstract from PubMedHomologous recombination (HR) is a central process of genome biology driven by a conserved recombinase, which catalyses the pairing of single-stranded DNA (ssDNA) with double-stranded DNA to generate a D-loop intermediate. Bacterial RadA is a conserved HR effector acting with RecA recombinase to promote ssDNA integration. The mechanism of this RadA-mediated assistance to RecA is unknown. Here, we report functional and structural analyses of RadA from the human pathogen Streptococcus pneumoniae. RadA is found to facilitate RecA-driven ssDNA recombination over long genomic distances during natural transformation. RadA is revealed as a hexameric DnaB-type helicase, which interacts with RecA to promote orientated unwinding of branched DNA molecules mimicking D-loop boundaries. These findings support a model of DNA branch migration in HR, relying on RecA-mediated loading of RadA hexamers on each strand of the recipient dsDNA in the D-loop, from which they migrate divergently to facilitate incorporation of invading ssDNA. Bacterial RadA is a DnaB-type helicase interacting with RecA to promote bidirectional D-loop extension.,Marie L, Rapisarda C, Morales V, Berge M, Perry T, Soulet AL, Gruget C, Remaut H, Fronzes R, Polard P Nat Commun. 2017 May 31;8:15638. doi: 10.1038/ncomms15638. PMID:28561029[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|