| Structural highlights
5lsh is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| | Method: | X-ray diffraction, Resolution 1.061Å |
| Ligands: | , , , , |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
LYSC_HUMAN Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:105200; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1]
Function
LYSC_HUMAN Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents.
Publication Abstract from PubMed
Interactions between human lysozyme (HL) and the lipopolysaccharide (LPS) of Klebsiella pneumoniae O1, a causative agent of lung infection, were identified by surface plasmon resonance. To characterize the molecular mechanism of this interaction, HL binding to synthetic disaccharides and tetrasaccharides representing one and two repeating units, respectively, of the O-chain of this LPS were studied. pH-dependent structural rearrangements of HL after interaction with the disaccharide were observed through nuclear magnetic resonance. The crystal structure of the HL-tetrasaccharide complex revealed carbohydrate chain packing into the A, B, C, and D binding sites of HL, which primarily occurred through residue-specific, direct or water-mediated hydrogen bonds and hydrophobic contacts. Overall, these results support a crucial role of the Glu35/Asp53/Trp63/Asp102 residues in HL binding to the tetrasaccharide. These observations suggest an unknown glycan-guided mechanism that underlies recognition of the bacterial cell wall by lysozyme and may complement the HL immune defense function.
Lysozyme's lectin-like characteristics facilitates its immune defense function.,Zhang R, Wu L, Eckert T, Burg-Roderfeld M, Rojas-Macias MA, Lutteke T, Krylov VB, Argunov DA, Datta A, Markart P, Guenther A, Norden B, Schauer R, Bhunia A, Enani MA, Billeter M, Scheidig AJ, Nifantiev NE, Siebert HC Q Rev Biophys. 2017 Jan;50:e9. doi: 10.1017/S0033583517000075. PMID:29233221[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CC, Terry CJ, et al.. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature. 1993 Apr 8;362(6420):553-7. PMID:8464497 doi:http://dx.doi.org/10.1038/362553a0
- ↑ Zhang R, Wu L, Eckert T, Burg-Roderfeld M, Rojas-Macias MA, Lutteke T, Krylov VB, Argunov DA, Datta A, Markart P, Guenther A, Norden B, Schauer R, Bhunia A, Enani MA, Billeter M, Scheidig AJ, Nifantiev NE, Siebert HC. Lysozyme's lectin-like characteristics facilitates its immune defense function. Q Rev Biophys. 2017 Jan;50:e9. doi: 10.1017/S0033583517000075. PMID:29233221 doi:http://dx.doi.org/10.1017/S0033583517000075
|