5nqh

From Proteopedia

Jump to: navigation, search

Structure of the human Fe65-PTB2 homodimer

Structural highlights

5nqh is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:GOL, SO4
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

APBB1_HUMAN Transcription coregulator that can have both coactivator and corepressor functions. Adapter protein that forms a transcriptionally active complex with the gamma-secretase-derived amyloid precursor protein (APP) intracellular domain. Plays a central role in the response to DNA damage by translocating to the nucleus and inducing apoptosis. May act by specifically recognizing and binding histone H2AX phosphorylated on 'Tyr-142' (H2AXY142ph) at double-strand breaks (DSBs), recruiting other pro-apoptosis factors such as MAPK8/JNK1. Required for histone H4 acetylation at double-strand breaks (DSBs). Its ability to specifically bind modified histones and chromatin modifying enzymes such as KAT5/TIP60, probably explains its trancription activation activity. Function in association with TSHZ3, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s).[1] [2] [3] [4] [5]

Publication Abstract from PubMed

Physiological function and pathology of the Alzheimer's disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 A resolution. Dimerization involves the unwinding of a C-terminal alpha-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction.,Feilen LP, Haubrich K, Strecker P, Probst S, Eggert S, Stier G, Sinning I, Konietzko U, Kins S, Simon B, Wild K Front Mol Neurosci. 2017 May 11;10:140. doi: 10.3389/fnmol.2017.00140., eCollection 2017. PMID:28553201[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

References

  1. Perkinton MS, Standen CL, Lau KF, Kesavapany S, Byers HL, Ward M, McLoughlin DM, Miller CC. The c-Abl tyrosine kinase phosphorylates the Fe65 adaptor protein to stimulate Fe65/amyloid precursor protein nuclear signaling. J Biol Chem. 2004 May 21;279(21):22084-91. Epub 2004 Mar 18. PMID:15031292 doi:10.1074/jbc.M311479200
  2. Nakaya T, Kawai T, Suzuki T. Regulation of FE65 nuclear translocation and function by amyloid beta-protein precursor in osmotically stressed cells. J Biol Chem. 2008 Jul 4;283(27):19119-31. Epub 2008 May 9. PMID:18468999 doi:M801827200
  3. Lau KF, Chan WM, Perkinton MS, Tudor EL, Chang RC, Chan HY, McLoughlin DM, Miller CC. Dexras1 interacts with FE65 to regulate FE65-amyloid precursor protein-dependent transcription. J Biol Chem. 2008 Dec 12;283(50):34728-37. Epub 2008 Oct 15. PMID:18922798 doi:M801874200
  4. Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature. 2009 Apr 2;458(7238):591-6. doi: 10.1038/nature07849. Epub 2009 Feb 22. PMID:19234442 doi:10.1038/nature07849
  5. Kajiwara Y, Akram A, Katsel P, Haroutunian V, Schmeidler J, Beecham G, Haines JL, Pericak-Vance MA, Buxbaum JD. FE65 binds Teashirt, inhibiting expression of the primate-specific caspase-4. PLoS One. 2009;4(4):e5071. doi: 10.1371/journal.pone.0005071. Epub 2009 Apr 3. PMID:19343227 doi:10.1371/journal.pone.0005071
  6. Feilen LP, Haubrich K, Strecker P, Probst S, Eggert S, Stier G, Sinning I, Konietzko U, Kins S, Simon B, Wild K. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction. Front Mol Neurosci. 2017 May 11;10:140. doi: 10.3389/fnmol.2017.00140., eCollection 2017. PMID:28553201 doi:http://dx.doi.org/10.3389/fnmol.2017.00140

Contents


PDB ID 5nqh

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools