5ved

From Proteopedia

Jump to: navigation, search

PAK4 kinase domain in complex with Staurosporine

Structural highlights

5ved is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.301Å
Ligands:SEP, STU
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PAK4_HUMAN Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell migration, growth, proliferation or cell survival. Activation by various effectors including growth factor receptors or active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates and inactivates the protein phosphatase SSH1, leading to increased inhibitory phosphorylation of the actin binding/depolymerizing factor cofilin. Decreased cofilin activity may lead to stabilization of actin filaments. Phosphorylates LIMK1, a kinase that also inhibits the activity of cofilin. Phosphorylates integrin beta5/ITGB5 and thus regulates cell motility. Phosphorylates ARHGEF2 and activates the downstream target RHOA that plays a role in the regulation of assembly of focal adhesions and actin stress fibers. Stimulates cell survival by phosphorylating the BCL2 antagonist of cell death BAD. Alternatively, inhibits apoptosis by preventing caspase-8 binding to death domain receptors in a kinase independent manner. Plays a role in cell-cycle progression by controlling levels of the cell-cycle regulatory protein CDKN1A and by phosphorylating RAN.[1] [2] [3] [4] [5] [6] [7]

Publication Abstract from PubMed

In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix alphaC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. AUTHOR SUMMARY: Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may indicate different mechanisms of regulation.

PAK4 crystal structures suggest unusual kinase conformational movements.,Zhang EY, Ha BH, Boggon TJ Biochim Biophys Acta. 2017 Oct 7. pii: S1570-9639(17)30242-X. doi:, 10.1016/j.bbapap.2017.10.004. PMID:28993291[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. Gnesutta N, Qu J, Minden A. The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis. J Biol Chem. 2001 Apr 27;276(17):14414-9. Epub 2001 Jan 24. PMID:11278822 doi:10.1074/jbc.M011046200
  2. Qu J, Cammarano MS, Shi Q, Ha KC, de Lanerolle P, Minden A. Activated PAK4 regulates cell adhesion and anchorage-independent growth. Mol Cell Biol. 2001 May;21(10):3523-33. PMID:11313478 doi:10.1128/MCB.21.10.3523-3533.2001
  3. Gnesutta N, Minden A. Death receptor-induced activation of initiator caspase 8 is antagonized by serine/threonine kinase PAK4. Mol Cell Biol. 2003 Nov;23(21):7838-48. PMID:14560027
  4. Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O. Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J. 2005 Feb 9;24(3):473-86. Epub 2005 Jan 20. PMID:15660133 doi:7600543
  5. Li Z, Zhang H, Lundin L, Thullberg M, Liu Y, Wang Y, Claesson-Welsh L, Stromblad S. p21-activated kinase 4 phosphorylation of integrin beta5 Ser-759 and Ser-762 regulates cell migration. J Biol Chem. 2010 Jul 30;285(31):23699-710. doi: 10.1074/jbc.M110.123497. Epub, 2010 May 27. PMID:20507994 doi:10.1074/jbc.M110.123497
  6. Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N. Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol. 2010 Sep 6;190(5):807-22. doi: 10.1083/jcb.200912056. Epub 2010 Aug , 30. PMID:20805321 doi:10.1083/jcb.200912056
  7. Wallace SW, Durgan J, Jin D, Hall A. Cdc42 regulates apical junction formation in human bronchial epithelial cells through PAK4 and Par6B. Mol Biol Cell. 2010 Sep 1;21(17):2996-3006. doi: 10.1091/mbc.E10-05-0429. Epub, 2010 Jul 14. PMID:20631255 doi:10.1091/mbc.E10-05-0429
  8. Zhang EY, Ha BH, Boggon TJ. PAK4 crystal structures suggest unusual kinase conformational movements. Biochim Biophys Acta. 2017 Oct 7. pii: S1570-9639(17)30242-X. doi:, 10.1016/j.bbapap.2017.10.004. PMID:28993291 doi:http://dx.doi.org/10.1016/j.bbapap.2017.10.004

Contents


PDB ID 5ved

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools