5vtk

From Proteopedia

Jump to: navigation, search

Structure of Pin1 WW Domain Variant 1 with beta3-Ser Loop Substitution

Structural highlights

5vtk is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.99Å
Ligands:B3S, CL
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PIN1_HUMAN Essential PPIase that regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity. Displays a preference for an acidic residue N-terminal to the isomerized proline bond. Catalyzes pSer/Thr-Pro cis/trans isomerizations. Down-regulates kinase activity of BTK. Can transactivate multiple oncogenes and induce centrosome amplification, chromosome instability and cell transformation. Required for the efficient dephosphorylation and recycling of RAF1 after mitogen activation.[1] [2] [3]

Publication Abstract from PubMed

beta-Amino acids have a backbone that is expanded by one carbon atom relative to alpha-amino acids, and beta residues have been investigated as subunits in protein-like molecules that adopt discrete and predictable conformations. Two classes of beta residue have been widely explored in the context of generating alpha-helix-like conformations: beta(3) -amino acids, which are homologous to alpha-amino acids and bear a side chain on the backbone carbon adjacent to nitrogen, and residues constrained by a five-membered ring, such the one derived from trans-2-aminocyclopentanecarboxylic acid (ACPC). Substitution of alpha residues with their beta(3) homologues within an alpha-helix-forming sequence generally causes a decrease in conformational stability. Use of a ring-constrained beta residue, however, can offset the destabilizing effect of alpha-->beta substitution. Here we extend the study of alpha-->beta substitutions, involving both beta(3) and ACPC residues, to short loops within a small tertiary motif. We start from previously reported variants of the Pin1 WW domain that contain a two-, three-, or four-residue beta-hairpin loop, and we evaluate alpha-->beta replacements at each loop position for each variant. By referral to the varphi,psi angles of the native structure, one can choose a stereochemically appropriate ACPC residue. Use of such logically chosen ACPC residues enhances conformational stability in several cases. Crystal structures of three beta-containing Pin1 WW domain variants show that a native-like tertiary structure is maintained in each case.

Evaluation of beta-Amino Acid Replacements in Protein Loops: Effects on Conformational Stability and Structure.,Mortenson DE, Kreitler DF, Thomas NC, Guzei IA, Gellman SH, Forest KT Chembiochem. 2017 Dec 22. doi: 10.1002/cbic.201700580. PMID:29272560[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
2 reviews cite this structure
Ganguly et al. (2020)
No citations found

See Also

References

  1. Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP, Morrison DK. Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell. 2005 Jan 21;17(2):215-24. PMID:15664191 doi:10.1016/j.molcel.2004.11.055
  2. Yu L, Mohamed AJ, Vargas L, Berglof A, Finn G, Lu KP, Smith CI. Regulation of Bruton tyrosine kinase by the peptidylprolyl isomerase Pin1. J Biol Chem. 2006 Jun 30;281(26):18201-7. Epub 2006 Apr 27. PMID:16644721 doi:10.1074/jbc.M603090200
  3. Lee TH, Chen CH, Suizu F, Huang P, Schiene-Fischer C, Daum S, Zhang YJ, Goate A, Chen RH, Zhou XZ, Lu KP. Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function. Mol Cell. 2011 Apr 22;42(2):147-59. doi: 10.1016/j.molcel.2011.03.005. Epub 2011 , Apr 14. PMID:21497122 doi:10.1016/j.molcel.2011.03.005
  4. Mortenson DE, Kreitler DF, Thomas NC, Guzei IA, Gellman SH, Forest KT. Evaluation of beta-Amino Acid Replacements in Protein Loops: Effects on Conformational Stability and Structure. Chembiochem. 2017 Dec 22. doi: 10.1002/cbic.201700580. PMID:29272560 doi:http://dx.doi.org/10.1002/cbic.201700580

Contents


PDB ID 5vtk

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools