5xpu
From Proteopedia
Crystal structure of MAD2L2/REV7 in complex with a CAMP fragment in a monoclinic crystal
Structural highlights
FunctionMD2L2_HUMAN Adapter protein able to interact with different proteins and involved in different biological processes. Mediates the interaction between the error-prone DNA polymerase zeta catalytic subunit REV3L and the inserter polymerase REV1, thereby mediating the second polymerase switching in translesion DNA synthesis. Translesion DNA synthesis releases the replication blockade of replicative polymerases, stalled in presence of DNA lesions. May also regulate another aspect of cellular response to DNA damage through regulation of the JNK-mediated phosphorylation and activation of the transcriptional activator ELK1. Inhibits the FZR1- and probably CDC20-mediated activation of the anaphase promoting complex APC thereby regulating progression through the cell cycle. Regulates TCF7L2-mediated gene transcription and may play a role in epithelial-mesenchymal transdifferentiation.[1] [2] [3] [4] [5] Publication Abstract from PubMedMitotic arrest deficient 2-like protein 2 (MAD2L2), also termed MAD2B or REV7, is involved in multiple cellular functions including translesion DNA synthesis (TLS), signal transduction, transcription, and mitotic events. MAD2L2 interacts with chromosome alignment-maintaining phosphoprotein (CAMP), a kinetochore-microtubule attachment protein in mitotic cells, presumably through a novel "WK" motif in CAMP. Structures of MAD2L2 in complex with binding regions of the TLS proteins REV3 and REV1 have revealed that MAD2L2 has two faces for protein-protein interactions (PPIs) that are regulated by its C-terminal region; however, the mechanisms underlying the MAD2L2-CAMP interaction and the mitotic role of MAD2L2 remain unknown. Here we have determined the structures of human MAD2L2 in complex with a CAMP fragment in two crystal forms. The overall structure of the MAD2L2-CAMP complex in both crystal forms was essentially similar to that of the MAD2L2-REV3 complex. However, the residue interactions between MAD2L2 and CAMP were strikingly different from those in the MAD2L2-REV3 complex. Furthermore, structure-based interaction analyses revealed an unprecedented mechanism involving CAMP's WK motif. Surprisingly, in one of the crystal forms, the MAD2L2-CAMP complex formed a dimeric structure in which the C-terminal region of MAD2L2 was swapped and adopted an immature structure. The structure provides direct evidence for the dynamic nature of MAD2L2 structure, which in turn may have implications for the PPI mechanism and the multiple functions of this protein. This work is the first structural study of MAD2L2 aside from its role in TLS and might pave the way to clarify MAD2L2's function in mitosis. Dynamic feature of mitotic arrest deficient 2-like protein 2 (MAD2L2) and structural basis for its interaction with chromosome alignment maintaining phosphoprotein (CAMP).,Hara K, Taharazako S, Ikeda M, Fujita H, Mikami Y, Kikuchi S, Hishiki A, Yokoyama H, Ishikawa Y, Kanno SI, Tanaka K, Hashimoto H J Biol Chem. 2017 Sep 8. pii: jbc.M117.804237. doi: 10.1074/jbc.M117.804237. PMID:28887307[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found References
|
|