5yj8

From Proteopedia

Jump to: navigation, search

Identification of a small molecule inhibitor for the Tudor domain of TDRD3

Structural highlights

5yj8 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.762Å
Ligands:8W9, SO4
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TDRD3_HUMAN Scaffolding protein that specifically recognizes and binds dimethylarginine-containing proteins. In nucleus, acts as a coactivator: recognizes and binds asymmetric dimethylation on the core histone tails associated with transcriptional activation (H3R17me2a and H4R3me2a) and recruits proteins at these arginine-methylated loci. In cytoplasm, may play a role in the assembly and/or disassembly of mRNA stress granules and in the regulation of translation of target mRNAs by binding Arg/Gly-rich motifs (GAR) in dimethylarginine-containing proteins.[1] [2] [3]

Publication Abstract from PubMed

As a reader of di-methylated arginine on various proteins, such as histone, RNA polymerase II, PIWI and Fragile X mental retardation protein, the Tudor domain of Tudor domain-containing protein 3 (TDRD3) mediates transcriptional activation in nucleus and formation of stress granules in the cytoplasm. Despite the TDRD3 implication in cancer cell proliferation and invasion, warheads to block the di-methylated arginine recognition pocket of the TDRD3 Tudor domain have not yet been uncovered. Here we identified 14 small molecule hits against the TDRD3 Tudor domain through NMR fragment-based screening. These hits were further cross-validated by using competitive fluorescence polarization and isothermal titration calorimetry experiments. The crystal structure of the TDRD3 Tudor domain in complex with hit 1 reveals a distinct binding mode from the nature substrate. Hit 1 protrudes into the aromatic cage of the TDRD3 Tudor domain, where the aromatic residues are tilted to accommodate a sandwich-like pi-pi interaction. The side chain of the conserved residue N596 swings away 3.1 A to form a direct hydrogen bond with hit 1. Moreover, this compound shows a decreased affinity against the single Tudor domain of survival motor neuron protein, but no detectable binding to neither the tandem Tudor domain of TP53-binding protein 1 nor the extended Tudor domain of staphylococcal nuclease domain-containing protein 1. Our work depicts the structural plasticity of the TDRD3 Tudor domain and paves the way for the subsequent structure-guided discovery of selective inhibitors targeting Tudor domains. DATABASE: Structural data are available in the PDB under the accession number 5YJ8.

Structural plasticity of the TDRD3 Tudor domain probed by a fragment screening hit.,Liu J, Zhang S, Liu M, Liu Y, Nshogoza G, Gao J, Ma R, Yang Y, Wu J, Zhang J, Li F, Ruan K FEBS J. 2018 Apr 12. doi: 10.1111/febs.14469. PMID:29645362[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

References

  1. Goulet I, Boisvenue S, Mokas S, Mazroui R, Cote J. TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules. Hum Mol Genet. 2008 Oct 1;17(19):3055-74. doi: 10.1093/hmg/ddn203. Epub 2008 Jul , 15. PMID:18632687 doi:10.1093/hmg/ddn203
  2. Cote J, Richard S. Tudor domains bind symmetrical dimethylated arginines. J Biol Chem. 2005 Aug 5;280(31):28476-83. Epub 2005 Jun 6. PMID:15955813 doi:M414328200
  3. Yang Y, Lu Y, Espejo A, Wu J, Xu W, Liang S, Bedford MT. TDRD3 is an effector molecule for arginine-methylated histone marks. Mol Cell. 2010 Dec 22;40(6):1016-23. doi: 10.1016/j.molcel.2010.11.024. PMID:21172665 doi:10.1016/j.molcel.2010.11.024
  4. Liu J, Zhang S, Liu M, Liu Y, Nshogoza G, Gao J, Ma R, Yang Y, Wu J, Zhang J, Li F, Ruan K. Structural plasticity of the TDRD3 Tudor domain probed by a fragment screening hit. FEBS J. 2018 Apr 12. doi: 10.1111/febs.14469. PMID:29645362 doi:http://dx.doi.org/10.1111/febs.14469

Contents


PDB ID 5yj8

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools