5z1v
From Proteopedia
Crystal structure of AvrPib
Structural highlights
FunctionPublication Abstract from PubMedFungal avirulence effectors, a key weapon utilized by pathogens to promote their infection, are recognized by immune receptors to boost host R gene-mediated resistance. Many avirulence effectors share sparse sequence homology to proteins with known functions, and their molecular and biochemical functions together with the evolutionary relationship among different members remain largely unknown. Here, the crystal structure of AvrPib, an avirulence effector from Magnaporthe oryzae, was determined and showed a high degree of similarity to the M. oryzae Avrs and ToxB (MAX) effectors. Compared with other MAX effectors, AvrPib has a distinct positive-charge patch formed by five positive-charged residues (K29, K30, R50, K52 and K70) on the surface. These five key residues were essential to avirulence function of AvrPib and affected its nuclear localization into host cells. Moreover, residues V39 and V58, which locate in the hydrophobic core of the structure, cause loss of function of AvrPib by single-point mutation in natural isolates. In comparison with the wild-type AvrPib, the V39A or V58A mutations resulted in a partial or entire loss of secondary structure elements. Taken together, our results suggest that differences in the surface charge distribution of avirulence proteins could be one of the major bases for the variation in effector-receptor specificity, and that destabilization of the hydrophobic core is one of the major mechanisms employed by AvrPib for the fungus to evade recognition by resistance factors in the host cell. A positive-charged patch and stabilized hydrophobic core are essential for avirulence function of AvrPib in the rice blast fungus.,Zhang X, He D, Zhao Y, Cheng X, Zhao W, Taylor IA, Yang J, Liu J, Peng YL Plant J. 2018 Jul 10. doi: 10.1111/tpj.14023. PMID:29989241[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Large Structures | Pyricularia oryzae | He D | Liu JF | Peng YL | Taylor IA | Yang J | Zhang X | Zhao YX