Structural highlights
Disease
[PRP8_HUMAN] Defects in PRPF8 are the cause of retinitis pigmentosa type 13 (RP13) [MIM:600059]. RP leads to degeneration of retinal photoreceptor cells. Patients typically have night vision blindness and loss of midperipheral visual field. As their condition progresses, they lose their far peripheral visual field and eventually central vision as well. RP13 inheritance is autosomal dominant.[1] [2] [:][3] [4] [SNIP1_HUMAN] The disease is caused by mutations affecting the gene represented in this entry. [SF3B4_HUMAN] Defects in SF3B4 are the cause of acrofacial dysostosis type 1 (AFD1) [MIM:154400]. AFD1 is a form of acrofacial dysostosis, a group of disorders which are characterized by malformation of the craniofacial skeleton and the limbs. The major facial features of AFD1 include downslanted palpebral fissures, midface retrusion, and micrognathia, the latter of which often requires the placement of a tracheostomy in early childhood. Limb defects typically involve the anterior (radial) elements of the upper limbs and manifest as small or absent thumbs, triphalangeal thumbs, radial hyoplasia or aplasia, and radioulnar synostosis. Phocomelia of the upper limbs and, occasionally, lower-limb defects have also been reported.[5] [CDC5L_HUMAN] Note=A chromosomal aberration involving CDC5L is found in multicystic renal dysplasia. Translocation t(6;19)(p21;q13.1) with USF2. [U5S1_HUMAN] Mandibulofacial dysostosis-microcephaly syndrome. The disease is caused by mutations affecting the gene represented in this entry. [U520_HUMAN] Retinitis pigmentosa. Retinitis pigmentosa 33 (RP33) [MIM:610359]: A retinal dystrophy belonging to the group of pigmentary retinopathies. Retinitis pigmentosa is characterized by retinal pigment deposits visible on fundus examination and primary loss of rod photoreceptor cells followed by secondary loss of cone photoreceptors. Patients typically have night vision blindness and loss of midperipheral visual field. As their condition progresses, they lose their far peripheral visual field and eventually central vision as well. Note=The disease is caused by mutations affecting the gene represented in this entry.[6] [7] [8] [9] [10] [R113A_HUMAN] The disease is caused by mutations affecting the gene represented in this entry.
Function
[AQR_HUMAN] Intron-binding spliceosomal protein required to link pre-mRNA splicing and snoRNP (small nucleolar ribonucleoprotein) biogenesis. Plays a key role in position-dependent assembly of intron-encoded box C/D small snoRNP, splicing being required for snoRNP assembly. May act by helping the folding of the snoRNA sequence. Binds to intron of pre-mRNAs in a sequence-independent manner, contacting the region between snoRNA and the branchpoint of introns (40 nucleotides upstream of the branchpoint) during the late stages of splicing.[11] [SYF1_HUMAN] Involved in transcription-coupled repair (TCR), transcription and pre-mRNA splicing.[12] [13] [SF3B1_HUMAN] Subunit of the splicing factor SF3B required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron. [RSMB_HUMAN] Appears to function in the U7 snRNP complex that is involved in histone 3'-end processing. Associated with snRNP U1, U2, U4/U6 and U5. May have a functional role in the pre-mRNA splicing or in snRNP structure. Binds to the downstream cleavage product (DCP) of histone pre-mRNA in a U7 snRNP dependent manner (By similarity). [PHF5A_HUMAN] Acts as a transcriptional regulator by binding to the GJA1/Cx43 promoter and enhancing its up-regulation by ESR1/ER-alpha. Also involved in pre-mRNA splicing.[14] [RU2B_HUMAN] Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA only in presence of the U2A' protein. [PRP8_HUMAN] Central component of the spliceosome, which may play a role in aligning the pre-mRNA 5'- and 3'-exons for ligation. Interacts with U5 snRNA, and with pre-mRNA 5'-splice sites in B spliceosomes and 3'-splice sites in C spliceosomes. [SF3A3_HUMAN] Subunit of the splicing factor SF3A required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. [PRP19_HUMAN] Plays a role in DNA double-strand break (DSB) repair. Binds double-stranded DNA in a sequence-nonspecific manner. Acts as a structural component of the nuclear framework. May also serve as a support for spliceosome binding and activity. Essential for spliceosome assembly in a oligomerization-dependent manner and might also be important for spliceosome stability. May have E3 ubiquitin ligase activity. The PSO4 complex is required in the DNA interstrand cross-links (ICLs) repair process. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing.[15] [16] [17] [18] [19] [20] [RU2A_HUMAN] This protein is associated with sn-RNP U2. It helps the A' protein to bind stem loop IV of U2 snRNA. [SNIP1_HUMAN] Down-regulates NF-kappa-B signaling by competing with RELA for CREBBP/EP300 binding. Involved in the microRNA (miRNA) biogenesis. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA.[21] [22] [23] [24] [SF3B6_HUMAN] Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex (PubMed:27720643). SF3B complex is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA (PubMed:12234937). Directly contacts the pre-mRNA branch site adenosine for the first catalytic step of splicing (PubMed:16432215). Enters the spliceosome and associates with the pre-mRNA branch site as part of the 17S U2 or, in the case of the minor spliceosome, as part of the 18S U11/U12 snRNP complex, and thus may facilitate the interaction of these snRNP with the branch sites of U2 and U12 respectively (PubMed:16432215).[25] [26] [27] [CRNL1_HUMAN] Involved in pre-mRNA splicing process. [PLRG1_HUMAN] Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. [SF3A2_HUMAN] Subunit of the splicing factor SF3A required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. [PPIE_HUMAN] PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Combines RNA-binding and PPIase activities. May be involved in muscle- and brain-specific processes. May be involved in pre-mRNA splicing. [SF3B4_HUMAN] Subunit of the splicing factor SF3B required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. SF3B4 has been found in complex 'B' and 'C' as well. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron. [RUXF_HUMAN] Appears to function in the U7 snRNP complex that is involved in histone 3'-end processing. Associated with snRNP U1, U2, U4/U6 and U5. [SPF27_HUMAN] Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR).[28] [RUXE_HUMAN] Appears to function in the U7 snRNP complex that is involved in histone 3'-end processing. Associated with snRNP U1, U2, U4/U6 and U5. [DHX16_HUMAN] Involved in pre-mRNA splicing. Contributes to pre-mRNA splicing after spliceosome formation and prior to the first transesterification reaction.[29] [30] [31] [CWC22_HUMAN] Required for pre-mRNA splicing and for exon-junction complex (EJC) assembly. Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay.[32] [33] [34] [SF3B2_HUMAN] Subunit of the splicing factor SF3B required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron. [SF3B3_HUMAN] Subunit of the splicing factor SF3B required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron. [CDC5L_HUMAN] DNA-binding protein involved in cell cycle control. May act as a transcription activator. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing.[35] [36] [37] [38] [39] [40] [41] [42] [43] [SMD3_HUMAN] Appears to function in the U7 snRNP complex that is involved in histone 3'-end processing. Binds to the downstream cleavage product (DCP) of histone pre-mRNA in a U7 snRNP dependent manner.[44] [PPIL1_HUMAN] PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. May be involved in pre-mRNA splicing.[45] [RBM22_HUMAN] Involved in the first step of pre-mRNA splicing. Binds directly to the internal stem-loop (ISL) domain of the U6 snRNA and to the pre-mRNA intron near the 5' splice site during the activation and catalytic phases of the spliceosome cycle. Involved in both translocations of the nuclear SLU7 to the cytoplasm and the cytosolic calcium-binding protein PDCD6 to the nucleus upon cellular stress responses.[46] [47] [48] [U5S1_HUMAN] Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex required for pre-mRNA splicing. Binds GTP. [SMD2_HUMAN] Required for pre-mRNA splicing. Required for snRNP biogenesis (By similarity). [SRRM2_HUMAN] Involved in pre-mRNA splicing. May function at or prior to the first catalytic step of splicing at the catalytic center of the spliceosome. May do so by stabilizing the catalytic center or the position of the RNA substrate (By similarity). Binds to RNA.[49] [RUXG_HUMAN] Appears to function in the U7 snRNP complex that is involved in histone 3'-end processing. Associated with snRNP U1, U2, U4/U6 and U5. [CWC27_HUMAN] PPIases accelerate the folding of proteins. [SMD1_HUMAN] May act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP-snRNP interactions through nonspecific electrostatic contacts with RNA. [U520_HUMAN] RNA helicase that plays an essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes. Involved in spliceosome assembly, activation and disassembly. Mediates changes in the dynamic network of RNA-RNA interactions in the spliceosome. Catalyzes the ATP-dependent unwinding of U4/U6 RNA duplices, an essential step in the assembly of a catalytically active spliceosome.[50] [51] [52] [53] [CWC15_HUMAN] Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing.[54] [PRP17_HUMAN] Associates with the spliceosome late in the splicing pathway and may function in the second step of pre-mRNA splicing.[55] [SF3A1_HUMAN] Subunit of the splicing factor SF3A required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. [SNR40_HUMAN] Component of the U5 small nuclear ribonucleoprotein (snRNP) complex. The U5 snRNP is part of the spliceosome, a multiprotein complex that catalyzes the removal of introns from pre-messenger RNAs.[56]
Publication Abstract from PubMed
During each cycle of pre-mRNA splicing, the pre-catalytic spliceosome (B complex) is converted into the activated spliceosome (B(act) complex), which has a well-formed active site but cannot proceed to the branching reaction. Here, we present the cryo-EM structure of the human B(act) complex in three distinct conformational states. The EM map allows atomic modeling of nearly all protein components of the U2 small nuclear ribonucleoprotein (snRNP), including three of the SF3a complex and seven of the SF3b complex. The structure of the human B(act) complex contains 52 proteins, U2, U5, and U6 small nuclear RNA (snRNA), and a pre-mRNA. Three distinct conformations have been captured, representing the early, mature, and late states of the human B(act) complex. These complexes differ in the orientation of the Switch loop of Prp8, the splicing factors RNF113A and NY-CO-10, and most components of the NineTeen complex (NTC) and the NTC-related complex. Analysis of these three complexes and comparison with the B and C complexes reveal an ordered flux of components in the B-to-B(act) and the B(act)-to-B(*) transitions, which ultimately prime the active site for the branching reaction.
Structure of the human activated spliceosome in three conformational states.,Zhang X, Yan C, Zhan X, Li L, Lei J, Shi Y Cell Res. 2018 Mar;28(3):307-322. doi: 10.1038/cr.2018.14. Epub 2018 Jan 23. PMID:29360106[57]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
Loading citation details.. Citations reviews cite this structure No citations found
References
- ↑ Pena V, Liu S, Bujnicki JM, Luhrmann R, Wahl MC. Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol Cell. 2007 Feb 23;25(4):615-24. PMID:17317632 doi:10.1016/j.molcel.2007.01.023
- ↑ McKie AB, McHale JC, Keen TJ, Tarttelin EE, Goliath R, van Lith-Verhoeven JJ, Greenberg J, Ramesar RS, Hoyng CB, Cremers FP, Mackey DA, Bhattacharya SS, Bird AC, Markham AF, Inglehearn CF. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet. 2001 Jul 15;10(15):1555-62. PMID:11468273
- ↑ van Lith-Verhoeven JJ, van der Velde-Visser SD, Sohocki MM, Deutman AF, Brink HM, Cremers FP, Hoyng CB. Clinical characterization, linkage analysis, and PRPC8 mutation analysis of a family with autosomal dominant retinitis pigmentosa type 13 (RP13). Ophthalmic Genet. 2002 Mar;23(1):1-12. PMID:11910553
- ↑ Martinez-Gimeno M, Gamundi MJ, Hernan I, Maseras M, Milla E, Ayuso C, Garcia-Sandoval B, Beneyto M, Vilela C, Baiget M, Antinolo G, Carballo M. Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2003 May;44(5):2171-7. PMID:12714658
- ↑ Bernier FP, Caluseriu O, Ng S, Schwartzentruber J, Buckingham KJ, Innes AM, Jabs EW, Innis JW, Schuette JL, Gorski JL, Byers PH, Andelfinger G, Siu V, Lauzon J, Fernandez BA, McMillin M, Scott RH, Racher H, Majewski J, Nickerson DA, Shendure J, Bamshad MJ, Parboosingh JS. Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome. Am J Hum Genet. 2012 May 4;90(5):925-33. doi: 10.1016/j.ajhg.2012.04.004. Epub, 2012 Apr 26. PMID:22541558 doi:10.1016/j.ajhg.2012.04.004
- ↑ Liu S, Rauhut R, Vornlocher HP, Luhrmann R. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. RNA. 2006 Jul;12(7):1418-30. Epub 2006 May 24. PMID:16723661 doi:rna.55406
- ↑ Santos KF, Jovin SM, Weber G, Pena V, Luhrmann R, Wahl MC. Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc Natl Acad Sci U S A. 2012 Oct 8. PMID:23045696 doi:10.1073/pnas.1208098109
- ↑ Zhao C, Bellur DL, Lu S, Zhao F, Grassi MA, Bowne SJ, Sullivan LS, Daiger SP, Chen LJ, Pang CP, Zhao K, Staley JP, Larsson C. Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet. 2009 Nov;85(5):617-27. Epub 2009 Oct 29. PMID:19878916 doi:S0002-9297(09)00455-8
- ↑ Li N, Mei H, MacDonald IM, Jiao X, Hejtmancik JF. Mutations in ASCC3L1 on 2q11.2 are associated with autosomal dominant retinitis pigmentosa in a Chinese family. Invest Ophthalmol Vis Sci. 2010 Feb;51(2):1036-43. doi: 10.1167/iovs.09-3725., Epub 2009 Aug 26. PMID:19710410 doi:10.1167/iovs.09-3725
- ↑ Benaglio P, McGee TL, Capelli LP, Harper S, Berson EL, Rivolta C. Next generation sequencing of pooled samples reveals new SNRNP200 mutations associated with retinitis pigmentosa. Hum Mutat. 2011 Jun;32(6):E2246-58. doi: 10.1002/humu.21485. Epub 2011 Feb 24. PMID:21618346 doi:10.1002/humu.21485
- ↑ Hirose T, Ideue T, Nagai M, Hagiwara M, Shu MD, Steitz JA. A spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing. Mol Cell. 2006 Sep 1;23(5):673-84. PMID:16949364 doi:http://dx.doi.org/S1097-2765(06)00491-6
- ↑ Nakatsu Y, Asahina H, Citterio E, Rademakers S, Vermeulen W, Kamiuchi S, Yeo JP, Khaw MC, Saijo M, Kodo N, Matsuda T, Hoeijmakers JH, Tanaka K. XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. J Biol Chem. 2000 Nov 10;275(45):34931-7. PMID:10944529 doi:http://dx.doi.org/10.1074/jbc.M004936200
- ↑ Kuraoka I, Ito S, Wada T, Hayashida M, Lee L, Saijo M, Nakatsu Y, Matsumoto M, Matsunaga T, Handa H, Qin J, Nakatani Y, Tanaka K. Isolation of XAB2 complex involved in pre-mRNA splicing, transcription, and transcription-coupled repair. J Biol Chem. 2008 Jan 11;283(2):940-50. Epub 2007 Nov 2. PMID:17981804 doi:http://dx.doi.org/10.1074/jbc.M706647200
- ↑ Will CL, Urlaub H, Achsel T, Gentzel M, Wilm M, Luhrmann R. Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J. 2002 Sep 16;21(18):4978-88. PMID:12234937
- ↑ Gotzmann J, Gerner C, Meissner M, Holzmann K, Grimm R, Mikulits W, Sauermann G. hNMP 200: a novel human common nuclear matrix protein combining structural and regulatory functions. Exp Cell Res. 2000 Nov 25;261(1):166-79. PMID:11082287 doi:10.1006/excr.2000.5025
- ↑ Mahajan KN, Mitchell BS. Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10746-51. Epub 2003 Sep 5. PMID:12960389 doi:http://dx.doi.org/10.1073/pnas.1631060100
- ↑ Grillari J, Ajuh P, Stadler G, Loscher M, Voglauer R, Ernst W, Chusainow J, Eisenhaber F, Pokar M, Fortschegger K, Grey M, Lamond AI, Katinger H. SNEV is an evolutionarily conserved splicing factor whose oligomerization is necessary for spliceosome assembly. Nucleic Acids Res. 2005 Dec 6;33(21):6868-83. Print 2005. PMID:16332694 doi:33/21/6868
- ↑ Loscher M, Fortschegger K, Ritter G, Wostry M, Voglauer R, Schmid JA, Watters S, Rivett AJ, Ajuh P, Lamond AI, Katinger H, Grillari J. Interaction of U-box E3 ligase SNEV with PSMB4, the beta7 subunit of the 20 S proteasome. Biochem J. 2005 Jun 1;388(Pt 2):593-603. PMID:15660529 doi:10.1042/BJ20041517
- ↑ Zhang N, Kaur R, Lu X, Shen X, Li L, Legerski RJ. The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. J Biol Chem. 2005 Dec 9;280(49):40559-67. Epub 2005 Oct 12. PMID:16223718 doi:M508453200
- ↑ Voglauer R, Chang MW, Dampier B, Wieser M, Baumann K, Sterovsky T, Schreiber M, Katinger H, Grillari J. SNEV overexpression extends the life span of human endothelial cells. Exp Cell Res. 2006 Apr 1;312(6):746-59. Epub 2006 Jan 4. PMID:16388800 doi:S0014-4827(05)00560-4
- ↑ Kim RH, Flanders KC, Birkey Reffey S, Anderson LA, Duckett CS, Perkins ND, Roberts AB. SNIP1 inhibits NF-kappa B signaling by competing for its binding to the C/H1 domain of CBP/p300 transcriptional co-activators. J Biol Chem. 2001 Dec 7;276(49):46297-304. Epub 2001 Sep 20. PMID:11567019 doi:http://dx.doi.org/10.1074/jbc.M103819200
- ↑ Roche KC, Wiechens N, Owen-Hughes T, Perkins ND. The FHA domain protein SNIP1 is a regulator of the cell cycle and cyclin D1 expression. Oncogene. 2004 Oct 28;23(50):8185-95. doi: 10.1038/sj.onc.1208025. PMID:15378006 doi:http://dx.doi.org/10.1038/sj.onc.1208025
- ↑ Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, Ramachandran V, Li W, Lagrange T, Walker JC, Chen X. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10073-8. doi:, 10.1073/pnas.0804218105. Epub 2008 Jul 15. PMID:18632581 doi:http://dx.doi.org/10.1073/pnas.0804218105
- ↑ Bracken CP, Wall SJ, Barre B, Panov KI, Ajuh PM, Perkins ND. Regulation of cyclin D1 RNA stability by SNIP1. Cancer Res. 2008 Sep 15;68(18):7621-8. doi: 10.1158/0008-5472.CAN-08-1217. PMID:18794151 doi:http://dx.doi.org/10.1158/0008-5472.CAN-08-1217
- ↑ Will CL, Urlaub H, Achsel T, Gentzel M, Wilm M, Luhrmann R. Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J. 2002 Sep 16;21(18):4978-88. PMID:12234937
- ↑ Schellenberg MJ, Edwards RA, Ritchie DB, Kent OA, Golas MM, Stark H, Luhrmann R, Glover JN, MacMillan AM. Crystal structure of a core spliceosomal protein interface. Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1266-71. Epub 2006 Jan 23. PMID:16432215
- ↑ Cretu C, Schmitzova J, Ponce-Salvatierra A, Dybkov O, De Laurentiis EI, Sharma K, Will CL, Urlaub H, Luhrmann R, Pena V. Molecular Architecture of SF3b and Structural Consequences of Its Cancer-Related Mutations. Mol Cell. 2016 Oct 20;64(2):307-319. doi: 10.1016/j.molcel.2016.08.036. Epub 2016, Oct 6. PMID:27720643 doi:http://dx.doi.org/10.1016/j.molcel.2016.08.036
- ↑ Marechal A, Li JM, Ji XY, Wu CS, Yazinski SA, Nguyen HD, Liu S, Jimenez AE, Jin J, Zou L. PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell. 2014 Jan 23;53(2):235-46. doi: 10.1016/j.molcel.2013.11.002. Epub 2013 , Dec 12. PMID:24332808 doi:http://dx.doi.org/10.1016/j.molcel.2013.11.002
- ↑ Gencheva M, Kato M, Newo AN, Lin RJ. Contribution of DEAH-box protein DHX16 in human pre-mRNA splicing. Biochem J. 2010 Jul 1;429(1):25-32. doi: 10.1042/BJ20100266. PMID:20423332 doi:http://dx.doi.org/10.1042/BJ20100266
- ↑ Gencheva M, Lin TY, Wu X, Yang L, Richard C, Jones M, Lin SB, Lin RJ. Nuclear retention of unspliced pre-mRNAs by mutant DHX16/hPRP2, a spliceosomal DEAH-box protein. J Biol Chem. 2010 Nov 12;285(46):35624-32. doi: 10.1074/jbc.M110.122309. Epub, 2010 Sep 14. PMID:20841358 doi:http://dx.doi.org/10.1074/jbc.M110.122309
- ↑ Zang S, Lin TY, Chen X, Gencheva M, Newo AN, Yang L, Rossi D, Hu J, Lin SB, Huang A, Lin RJ. GPKOW is essential for pre-mRNA splicing in vitro and suppresses splicing defect caused by dominant-negative DHX16 mutation in vivo. Biosci Rep. 2014 Dec 12;34(6):e00163. doi: 10.1042/BSR20140142. PMID:25296192 doi:http://dx.doi.org/10.1042/BSR20140142
- ↑ Steckelberg AL, Boehm V, Gromadzka AM, Gehring NH. CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep. 2012 Sep 27;2(3):454-61. doi: 10.1016/j.celrep.2012.08.017. Epub 2012, Sep 6. PMID:22959432 doi:http://dx.doi.org/10.1016/j.celrep.2012.08.017
- ↑ Barbosa I, Haque N, Fiorini F, Barrandon C, Tomasetto C, Blanchette M, Le Hir H. Human CWC22 escorts the helicase eIF4AIII to spliceosomes and promotes exon junction complex assembly. Nat Struct Mol Biol. 2012 Oct;19(10):983-90. doi: 10.1038/nsmb.2380. Epub 2012, Sep 9. PMID:22961380 doi:http://dx.doi.org/10.1038/nsmb.2380
- ↑ Alexandrov A, Colognori D, Shu MD, Steitz JA. Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21313-8. doi:, 10.1073/pnas.1219725110. Epub 2012 Dec 10. PMID:23236153 doi:http://dx.doi.org/10.1073/pnas.1219725110
- ↑ Bernstein HS, Coughlin SR. Pombe Cdc5-related protein. A putative human transcription factor implicated in mitogen-activated signaling. J Biol Chem. 1997 Feb 28;272(9):5833-7. PMID:9038199
- ↑ Ohi R, Feoktistova A, McCann S, Valentine V, Look AT, Lipsick JS, Gould KL. Myb-related Schizosaccharomyces pombe cdc5p is structurally and functionally conserved in eukaryotes. Mol Cell Biol. 1998 Jul;18(7):4097-108. PMID:9632794
- ↑ Bernstein HS, Coughlin SR. A mammalian homolog of fission yeast Cdc5 regulates G2 progression and mitotic entry. J Biol Chem. 1998 Feb 20;273(8):4666-71. PMID:9468527
- ↑ Burns CG, Ohi R, Krainer AR, Gould KL. Evidence that Myb-related CDC5 proteins are required for pre-mRNA splicing. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13789-94. PMID:10570151
- ↑ Ajuh P, Kuster B, Panov K, Zomerdijk JC, Mann M, Lamond AI. Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J. 2000 Dec 1;19(23):6569-81. PMID:11101529 doi:10.1093/emboj/19.23.6569
- ↑ Lei XH, Shen X, Xu XQ, Bernstein HS. Human Cdc5, a regulator of mitotic entry, can act as a site-specific DNA binding protein. J Cell Sci. 2000 Dec;113 Pt 24:4523-31. PMID:11082045
- ↑ Ajuh P, Sleeman J, Chusainow J, Lamond AI. A direct interaction between the carboxyl-terminal region of CDC5L and the WD40 domain of PLRG1 is essential for pre-mRNA splicing. J Biol Chem. 2001 Nov 9;276(45):42370-81. Epub 2001 Sep 5. PMID:11544257 doi:10.1074/jbc.M105453200
- ↑ Leonard D, Ajuh P, Lamond AI, Legerski RJ. hLodestar/HuF2 interacts with CDC5L and is involved in pre-mRNA splicing. Biochem Biophys Res Commun. 2003 Sep 5;308(4):793-801. PMID:12927788
- ↑ Graub R, Lancero H, Pedersen A, Chu M, Padmanabhan K, Xu XQ, Spitz P, Chalkley R, Burlingame AL, Stokoe D, Bernstein HS. Cell cycle-dependent phosphorylation of human CDC5 regulates RNA processing. Cell Cycle. 2008 Jun 15;7(12):1795-803. Epub 2008 Jun 25. PMID:18583928
- ↑ Pillai RS, Will CL, Luhrmann R, Schumperli D, Muller B. Purified U7 snRNPs lack the Sm proteins D1 and D2 but contain Lsm10, a new 14 kDa Sm D1-like protein. EMBO J. 2001 Oct 1;20(19):5470-9. PMID:11574479 doi:10.1093/emboj/20.19.5470
- ↑ Xu C, Zhang J, Huang X, Sun J, Xu Y, Tang Y, Wu J, Shi Y, Huang Q, Zhang Q. Solution structure of human peptidyl prolyl isomerase-like protein 1 and insights into its interaction with SKIP. J Biol Chem. 2006 Jun 9;281(23):15900-8. Epub 2006 Apr 4. PMID:16595688 doi:10.1074/jbc.M511155200
- ↑ Montaville P, Dai Y, Cheung CY, Giller K, Becker S, Michalak M, Webb SE, Miller AL, Krebs J. Nuclear translocation of the calcium-binding protein ALG-2 induced by the RNA-binding protein RBM22. Biochim Biophys Acta. 2006 Nov;1763(11):1335-43. Epub 2006 Sep 14. PMID:17045351 doi:http://dx.doi.org/10.1016/j.bbamcr.2006.09.003
- ↑ Janowicz A, Michalak M, Krebs J. Stress induced subcellular distribution of ALG-2, RBM22 and hSlu7. Biochim Biophys Acta. 2011 May;1813(5):1045-9. doi: 10.1016/j.bbamcr.2010.11.010., Epub 2010 Nov 29. PMID:21122810 doi:http://dx.doi.org/10.1016/j.bbamcr.2010.11.010
- ↑ Rasche N, Dybkov O, Schmitzova J, Akyildiz B, Fabrizio P, Luhrmann R. Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre. EMBO J. 2012 Mar 21;31(6):1591-604. doi: 10.1038/emboj.2011.502. Epub 2012 Jan, 13. PMID:22246180 doi:http://dx.doi.org/10.1038/emboj.2011.502
- ↑ Blencowe BJ, Bauren G, Eldridge AG, Issner R, Nickerson JA, Rosonina E, Sharp PA. The SRm160/300 splicing coactivator subunits. RNA. 2000 Jan;6(1):111-20. PMID:10668804
- ↑ Liu S, Rauhut R, Vornlocher HP, Luhrmann R. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. RNA. 2006 Jul;12(7):1418-30. Epub 2006 May 24. PMID:16723661 doi:rna.55406
- ↑ Lauber J, Fabrizio P, Teigelkamp S, Lane WS, Hartmann E, Luhrmann R. The HeLa 200 kDa U5 snRNP-specific protein and its homologue in Saccharomyces cerevisiae are members of the DEXH-box protein family of putative RNA helicases. EMBO J. 1996 Aug 1;15(15):4001-15. PMID:8670905
- ↑ Laggerbauer B, Achsel T, Luhrmann R. The human U5-200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4188-92. PMID:9539711
- ↑ Santos KF, Jovin SM, Weber G, Pena V, Luhrmann R, Wahl MC. Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc Natl Acad Sci U S A. 2012 Oct 8. PMID:23045696 doi:10.1073/pnas.1208098109
- ↑ Grote M, Wolf E, Will CL, Lemm I, Agafonov DE, Schomburg A, Fischle W, Urlaub H, Luhrmann R. Molecular architecture of the human Prp19/CDC5L complex. Mol Cell Biol. 2010 May;30(9):2105-19. doi: 10.1128/MCB.01505-09. Epub 2010 Feb, 22. PMID:20176811 doi:http://dx.doi.org/10.1128/MCB.01505-09
- ↑ Lindsey LA, Garcia-Blanco MA. Functional conservation of the human homolog of the yeast pre-mRNA splicing factor Prp17p. J Biol Chem. 1998 Dec 4;273(49):32771-5. PMID:9830021
- ↑ Achsel T, Ahrens K, Brahms H, Teigelkamp S, Luhrmann R. The human U5-220kD protein (hPrp8) forms a stable RNA-free complex with several U5-specific proteins, including an RNA unwindase, a homologue of ribosomal elongation factor EF-2, and a novel WD-40 protein. Mol Cell Biol. 1998 Nov;18(11):6756-66. PMID:9774689
- ↑ Zhang X, Yan C, Zhan X, Li L, Lei J, Shi Y. Structure of the human activated spliceosome in three conformational states. Cell Res. 2018 Mar;28(3):307-322. doi: 10.1038/cr.2018.14. Epub 2018 Jan 23. PMID:29360106 doi:http://dx.doi.org/10.1038/cr.2018.14
| |