6bmt

From Proteopedia

Jump to: navigation, search

Crystal Structure of a Recombinant form of Human Myeloperoxidase Bound to an Inhibitor from Staphylococcus delphini

Structural highlights

6bmt is a 2 chain structure with sequence from Homo sapiens and Staphylococcus delphini. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.403Å
Ligands:CA, CL, HEM, NAG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

PERM_HUMAN Defects in MPO are the cause of myeloperoxidase deficiency (MPOD) [MIM:254600. A disorder characterized by decreased myeloperoxidase activity in neutrophils and monocytes that results in disseminated candidiasis.[1] [2] [3] [4] [5]

Function

PERM_HUMAN Part of the host defense system of polymorphonuclear leukocytes. It is responsible for microbicidal activity against a wide range of organisms. In the stimulated PMN, MPO catalyzes the production of hypohalous acids, primarily hypochlorous acid in physiologic situations, and other toxic intermediates that greatly enhance PMN microbicidal activity.

Publication Abstract from PubMed

Staphylococcus aureus and related species are highly adapted to their hosts and have evolved numerous strategies to evade the immune system. S. aureus shows resistance to killing following uptake into the phagosome, which suggests that the bacterium evades intracellular killing mechanisms used by neutrophils. We recently discovered an S. aureus protein (SPIN for Staphylococcal Peroxidase INhibitor) that binds to and inhibits myeloperoxidase (MPO), a major player in the oxidative defense of neutrophils. To allow for comparative studies between multiple SPIN sequences, we identified a panel of homologs from species closely related to S. aureus. Characterization of these proteins revealed that SPIN molecules from S. agnetis, S. delphini, S. schleiferi, and S. intermedius all bind human MPO with nanomolar affinities, and that those from S. delphini, S. schleiferi, and S. intermedius inhibit human MPO in a dose-dependent manner. A 2.4A resolution co-crystal structure of SPIN-delphini bound to recombinant human MPO allowed us to identify conserved structural features of SPIN proteins, and to propose sequence-dependent physical explanations for why SPIN-aureus binds human MPO with higher affinity than SPIN-delphini. Together, these studies expand our understanding of MPO binding and inhibition by a recently identified component of the staphylococcal innate immune evasion arsenal.

Identification and structural characterization of a novel myeloperoxidase inhibitor from Staphylococcus delphini.,Ploscariu NT, de Jong NWM, van Kessel KPM, van Strijp JAG, Geisbrecht BV Arch Biochem Biophys. 2018 Mar 7;645:1-11. doi: 10.1016/j.abb.2018.03.007. PMID:29524428[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Kizaki M, Miller CW, Selsted ME, Koeffler HP. Myeloperoxidase (MPO) gene mutation in hereditary MPO deficiency. Blood. 1994 Apr 1;83(7):1935-40. PMID:8142659
  2. Nauseef WM, Brigham S, Cogley M. Hereditary myeloperoxidase deficiency due to a missense mutation of arginine 569 to tryptophan. J Biol Chem. 1994 Jan 14;269(2):1212-6. PMID:7904599
  3. Nauseef WM, Cogley M, McCormick S. Effect of the R569W missense mutation on the biosynthesis of myeloperoxidase. J Biol Chem. 1996 Apr 19;271(16):9546-9. PMID:8621627
  4. DeLeo FR, Goedken M, McCormick SJ, Nauseef WM. A novel form of hereditary myeloperoxidase deficiency linked to endoplasmic reticulum/proteasome degradation. J Clin Invest. 1998 Jun 15;101(12):2900-9. PMID:9637725 doi:10.1172/JCI2649
  5. Romano M, Dri P, Dadalt L, Patriarca P, Baralle FE. Biochemical and molecular characterization of hereditary myeloperoxidase deficiency. Blood. 1997 Nov 15;90(10):4126-34. PMID:9354683
  6. Ploscariu NT, de Jong NWM, van Kessel KPM, van Strijp JAG, Geisbrecht BV. Identification and structural characterization of a novel myeloperoxidase inhibitor from Staphylococcus delphini. Arch Biochem Biophys. 2018 Mar 7;645:1-11. doi: 10.1016/j.abb.2018.03.007. PMID:29524428 doi:http://dx.doi.org/10.1016/j.abb.2018.03.007

Contents


PDB ID 6bmt

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools