6c26

From Proteopedia

Jump to: navigation, search

The Cryo-EM structure of a eukaryotic oligosaccharyl transferase complex

Structural highlights

6c26 is a 8 chain structure with sequence from Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.5Å
Experimental data:Check to display Experimental Data
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

STT3_YEAST Catalytic subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity.[1]

Publication Abstract from PubMed

N-glycosylation is a ubiquitous modification of eukaryotic secretory and membrane-bound proteins; about 90% of glycoproteins are N-glycosylated. The reaction is catalysed by an eight-protein oligosaccharyltransferase complex, OST, embedded in the ER membrane. Our understanding of eukaryotic protein N-glycosylation has been limited owing to the lack of high-resolution structures. Here we report a 3.5-A resolution cryo-EM structure of the Saccharomyces cerevisiae OST, revealing the structures of Ost1-5, Stt3, Wbp1, and Swp1. We found that seven phospholipids mediate many of the inter-subunit interactions, and an Stt3 N-glycan mediates interactions with Wbp1 and Swp1 in the lumen. Ost3 was found to mediate the OST-Sec61 translocon interface, funnelling the acceptor peptide towards the OST catalytic site as the nascent peptide emerges from the translocon. The structure provides novel insights into co-translational protein N-glycosylation and may facilitate the development of small-molecule inhibitors targeting this process.

The atomic structure of a eukaryotic oligosaccharyltransferase complex.,Bai L, Wang T, Zhao G, Kovach A, Li H Nature. 2018 Jan 22. pii: nature25755. doi: 10.1038/nature25755. PMID:29466327[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Yan Q, Lennarz WJ. Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J Biol Chem. 2002 Dec 6;277(49):47692-700. Epub 2002 Sep 30. PMID:12359722 doi:http://dx.doi.org/10.1074/jbc.M208136200
  2. Bai L, Wang T, Zhao G, Kovach A, Li H. The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature. 2018 Jan 22. pii: nature25755. doi: 10.1038/nature25755. PMID:29466327 doi:http://dx.doi.org/10.1038/nature25755

Contents


6c26, resolution 3.50Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools