6cp3
From Proteopedia
Monomer yeast ATP synthase (F1Fo) reconstituted in nanodisc with inhibitor of oligomycin bound.
Structural highlights
FunctionATPO_YEAST Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements. Publication Abstract from PubMedMitochondrial ATP synthase comprises a membrane embedded Fo motor that rotates to drive ATP synthesis in the F1 subunit. We used single-particle cryo-EM to obtain structures of the full complex in a lipid bilayer in the absence or presence of the inhibitor oligomycin, at 3.6 A and 3.8 A resolution, respectively. To limit conformational heterogeneity, we locked the rotor in a single conformation by fusing the F6 subunit of the stator with the delta-subunit of the rotor. Assembly of the enzyme with the F6-delta fusion caused a twisting of the rotor and a 9 degrees rotation of the Fo c10-ring in the direction of ATP synthesis, relative to the structure of isolated Fo Our cryo-EM structures show how F1 and Fo are coupled, give insight into the proton translocation pathway and show how oligomycin blocks ATP synthesis. High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane.,Srivastava AP, Luo M, Zhou W, Symersky J, Bai D, Chambers MG, Faraldo-Gomez JD, Liao M, Mueller DM Science. 2018 Apr 12. pii: science.aas9699. doi: 10.1126/science.aas9699. PMID:29650704[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|