6da2

From Proteopedia

Jump to: navigation, search

Human CYP3A4 bound to an inhibitor

Structural highlights

6da2 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.65Å
Ligands:G0D, GOL, HEM
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CP3A4_HUMAN Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.[1]

Publication Abstract from PubMed

In a continuing effort to identify structural attributes required for strong binding and potent inhibition of human drug-metabolizing CYP3A4, we designed ten ritonavir-like analogs differing in the side-group stereochemistry, backbone atomic composition, and head-group spacing. All analogs had pyridine and tert-butyloxycarbonyl (Boc) as the heme-ligating and tail groups, respectively, phenyl side-groups, and either a methyl- or ethyl-pyridyl linker. Each linker subseries had S/R, R/S, R/R and S/S side-group conformers (4a-d and 4e-h, respectively), and one S/S stereoisomer with the backbone S-to-N-heteroatom substitution (6a and 6b). To elucidate structure-activity relationships, ligand-dependent changes in optical spectra, dissociation constant (Ks), inhibitory potency (IC50), thermostability, and heme ligation and reduction kinetics were analyzed. Comparison of the subseries and individual compounds showed that CYP3A4 only weakly discriminates between side-group configurations, associates more tightly with the pyridyl-ethyl-linker analogs, and strongly disfavors the N-containing backbone. Ks and IC50 for the pyridyl-ethyl R/R conformer, 4g, were the lowest and close to those for ritonavir: 0.04 and 0.31 microM versus 0.02 and 0.13 microM, respectively. Determination of the X-ray structures of the inhibitory complexes was critical for experimental data interpretation, especially for the uniquely oriented 4a and 4e. Based on structural analysis we conclude that, for this series of analogs, the ligand-mediated interactions near the heme are dominant and define the binding mode, and that fine-tuning of these interactions, as well as the backbone spacing could further improve the affinity and inhibitory strength.

Structure-activity relationships of rationally designed ritonavir analogs: Impact of side-group stereochemistry, head-group spacing, and backbone composition on the interaction with CYP3A4.,Samuels ER, Sevrioukova I Biochemistry. 2019 Mar 26. doi: 10.1021/acs.biochem.9b00156. PMID:30912932[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Miyazawa M, Shindo M, Shimada T. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Drug Metab Dispos. 2001 Feb;29(2):200-5. PMID:11159812
  2. Samuels ER, Sevrioukova I. Structure-activity relationships of rationally designed ritonavir analogs: Impact of side-group stereochemistry, head-group spacing, and backbone composition on the interaction with CYP3A4. Biochemistry. 2019 Mar 26. doi: 10.1021/acs.biochem.9b00156. PMID:30912932 doi:http://dx.doi.org/10.1021/acs.biochem.9b00156

Contents


PDB ID 6da2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools