Structural highlights
Function
MCM2_YEAST Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity; specifically the MCM2-MCM5 association is proposed to be reversible and to mediate a open ring conformation which may facilitate DNA loading. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Necessary for cell growth.[1] [2]
Publication Abstract from PubMed
Eukaryotic origins of replication are licensed upon loading of the MCM helicase motor onto DNA. ATP hydrolysis by MCM is required for loading and the post-catalytic MCM is an inactive double hexamer that encircles duplex DNA. Origin firing depends on MCM engagement of Cdc45 and GINS to form the CMG holo-helicase. CMG assembly requires several steps including MCM phosphorylation by DDK. To understand origin activation, here we have determined the cryo-EM structures of DNA-bound MCM, either unmodified or phosphorylated, and visualize a phospho-dependent MCM element likely important for Cdc45 recruitment. MCM pore loops touch both the Watson and Crick strands, constraining duplex DNA in a bent configuration. By comparing our new MCM-DNA structure with the structure of CMG-DNA, we suggest how the conformational transition from the loaded, post-catalytic MCM to CMG might promote DNA untwisting and melting at the onset of replication.
Cryo-EM structure of a licensed DNA replication origin.,Abid Ali F, Douglas ME, Locke J, Pye VE, Nans A, Diffley JFX, Costa A Nat Commun. 2017 Dec 21;8(1):2241. doi: 10.1038/s41467-017-02389-0. PMID:29269875[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009 Nov 13;139(4):719-30. doi: 10.1016/j.cell.2009.10.015. Epub 2009 Nov, 5. PMID:19896182 doi:http://dx.doi.org/10.1016/j.cell.2009.10.015
- ↑ Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20240-5. doi:, 10.1073/pnas.0911500106. Epub 2009 Nov 12. PMID:19910535 doi:http://dx.doi.org/10.1073/pnas.0911500106
- ↑ Abid Ali F, Douglas ME, Locke J, Pye VE, Nans A, Diffley JFX, Costa A. Cryo-EM structure of a licensed DNA replication origin. Nat Commun. 2017 Dec 21;8(1):2241. doi: 10.1038/s41467-017-02389-0. PMID:29269875 doi:http://dx.doi.org/10.1038/s41467-017-02389-0