6f7c

From Proteopedia

Jump to: navigation, search

TUBULIN-Compound 12 complex

Structural highlights

6f7c is a 6 chain structure with sequence from Bos taurus, Buffalo rat and Chick. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:ACP, CA, CVT, GDP, GTP, MES, MG
Gene:Stmn4 (Buffalo rat), TTL (CHICK)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[TBA1B_BOVIN] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain. [STMN4_RAT] Exhibits microtubule-destabilizing activity.[1] [2] [3] [TBB2B_BOVIN] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain (By similarity).

Publication Abstract from PubMed

Tubulin is one of the best validated anti-cancer targets, but most anti-tubulin agents have unfavorable therapeutic indexes. Here, we characterized the tubulin-binding activity, the mechanism of action, and the in vivo anti-leukemia efficacy of three 3,4,5-trimethoxy-N-acylhydrazones. We show that all compounds target the colchicine-binding site of tubulin and that none is a substrate of ABC transporters. The crystal structure of the tubulin-bound N-(1'-naphthyl)-3,4,5-trimethoxybenzohydrazide (12) revealed steric hindrance on the T7 loop movement of beta-tubulin, thereby rendering tubulin assembly incompetent. Using dose escalation and short-term repeated dose studies, we further report that this compound class is well tolerated to >100 mg/kg in mice. We finally observed that intraperitoneally administered compound 12 significantly prolonged the overall survival of mice transplanted with both sensitive and multidrug-resistant acute lymphoblastic leukemia (ALL) cells. Taken together, this work describes promising colchicine-site-targeting tubulin inhibitors featuring favorable therapeutic effects against ALL and multidrug-resistant cells.

Structural Basis of Colchicine-Site targeting Acylhydrazones active against Multidrug-Resistant Acute Lymphoblastic Leukemia.,Cury NM, Muhlethaler T, Laranjeira ABA, Canevarolo RR, Zenatti PP, Lucena-Agell D, Barasoain I, Song C, Sun D, Dovat S, Yunes RA, Prota AE, Steinmetz MO, Diaz JF, Yunes JA iScience. 2019 Oct 2;21:95-109. doi: 10.1016/j.isci.2019.10.003. PMID:31655259[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

References

  1. Nakao C, Itoh TJ, Hotani H, Mori N. Modulation of the stathmin-like microtubule destabilizing activity of RB3, a neuron-specific member of the SCG10 family, by its N-terminal domain. J Biol Chem. 2004 May 28;279(22):23014-21. Epub 2004 Mar 22. PMID:15039434 doi:http://dx.doi.org/10.1074/jbc.M313693200
  2. Gavet O, El Messari S, Ozon S, Sobel A. Regulation and subcellular localization of the microtubule-destabilizing stathmin family phosphoproteins in cortical neurons. J Neurosci Res. 2002 Jun 1;68(5):535-50. PMID:12111843 doi:http://dx.doi.org/10.1002/jnr.10234
  3. Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004 Mar 11;428(6979):198-202. PMID:15014504 doi:http://dx.doi.org/10.1038/nature02393
  4. Cury NM, Muhlethaler T, Laranjeira ABA, Canevarolo RR, Zenatti PP, Lucena-Agell D, Barasoain I, Song C, Sun D, Dovat S, Yunes RA, Prota AE, Steinmetz MO, Diaz JF, Yunes JA. Structural Basis of Colchicine-Site targeting Acylhydrazones active against Multidrug-Resistant Acute Lymphoblastic Leukemia. iScience. 2019 Oct 2;21:95-109. doi: 10.1016/j.isci.2019.10.003. PMID:31655259 doi:http://dx.doi.org/10.1016/j.isci.2019.10.003

Contents


PDB ID 6f7c

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools