6ftj

From Proteopedia

Jump to: navigation, search

Cryo-EM Structure of the Mammalian Oligosaccharyltransferase Bound to Sec61 and the Non-programmed 80S Ribosome

Structural highlights

6ftj is a 10 chain structure with sequence from Oryctolagus cuniculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 4.7Å
Ligands:NAG, BMA, MAN, MG, ZN, 9UB
Experimental data:Check to display Experimental Data
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RL8_RABIT Component of the large ribosomal subunit (PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857).[1] [2] [3] [4]

Publication Abstract from PubMed

Protein synthesis, transport and N-glycosylation are coupled at the mammalian endoplasmic reticulum (ER) by complex formation between the ribosome, the Sec61 protein-conducting channel and the oligosaccharyltransferase (OST). Here, we used different cryo-electron microscopy approaches to determine structures of native and solubilized ribosome-Sec61-OST complexes. A molecular model for the catalytic OST subunit revealed how STT3A is integrated into the OST and how STT3 paralog specificity for translocon-associated OST is achieved. The OST subunit DC2 was placed at the interface between Sec61 and STT3A, where it acts as a versatile module for recruitment of STT3A-containing OST to the ribosome-Sec61 complex. This detailed structural view on the molecular architecture of the co-translational machinery for N-glycosylation provides the basis for a mechanistic understanding of glycoprotein biogenesis at the ER.

Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum.,Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O, Mandon EC, Becker T, Forster F, Beckmann R Science. 2018 Mar 8. pii: science.aar7899. doi: 10.1126/science.aar7899. PMID:29519914[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Muhs M, Hilal T, Mielke T, Skabkin MA, Sanbonmatsu KY, Pestova TV, Spahn CM. Cryo-EM of Ribosomal 80S Complexes with Termination Factors Reveals the Translocated Cricket Paralysis Virus IRES. Mol Cell. 2015 Feb 5;57(3):422-432. doi: 10.1016/j.molcel.2014.12.016. Epub 2015 , Jan 15. PMID:25601755 doi:http://dx.doi.org/10.1016/j.molcel.2014.12.016
  2. Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5. PMID:26245381 doi:http://dx.doi.org/10.1038/nature14896
  3. Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell. 2016 Nov 17;167(5):1229-1240.e15. doi: 10.1016/j.cell.2016.10.046. PMID:27863242 doi:http://dx.doi.org/10.1016/j.cell.2016.10.046
  4. Flis J, Holm M, Rundlet EJ, Loerke J, Hilal T, Dabrowski M, Burger J, Mielke T, Blanchard SC, Spahn CMT, Budkevich TV. tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis. Cell Rep. 2018 Dec 4;25(10):2676-2688.e7. doi: 10.1016/j.celrep.2018.11.040. PMID:30517857 doi:http://dx.doi.org/10.1016/j.celrep.2018.11.040
  5. Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O, Mandon EC, Becker T, Forster F, Beckmann R. Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science. 2018 Mar 8. pii: science.aar7899. doi: 10.1126/science.aar7899. PMID:29519914 doi:http://dx.doi.org/10.1126/science.aar7899

Contents


6ftj, resolution 4.70Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools