6g0p
From Proteopedia
Crystal Structure of the first bromodomain of human BRD4 in complex with an acetylated E2F1 peptide (K117ac/K120ac)
Structural highlights
Disease[BRD4_HUMAN] Note=A chromosomal aberration involving BRD4 is found in a rare, aggressive, and lethal carcinoma arising in midline organs of young people. Translocation t(15;19)(q14;p13) with NUT which produces a BRD4-NUT fusion protein.[1] [2] Function[BRD4_HUMAN] Plays a role in a process governing chromosomal dynamics during mitosis (By similarity). [E2F1_HUMAN] Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase. E2F1 binds preferentially RB1 in a cell-cycle dependent manner. It can mediate both cell proliferation and TP53/p53-dependent apoptosis.[3] [4] [5] [6] Publication Abstract from PubMedTargeting bromodomains (BRDs) of the bromo-and-extra-terminal (BET) family offers opportunities for therapeutic intervention in cancer and other diseases. Here, we profile the interactomes of BRD2, BRD3, BRD4, and BRDT following treatment with the pan-BET BRD inhibitor JQ1, revealing broad rewiring of the interaction landscape, with three distinct classes of behavior for the 603 unique interactors identified. A group of proteins associate in a JQ1-sensitive manner with BET BRDs through canonical and new binding modes, while two classes of extra-terminal (ET)-domain binding motifs mediate acetylation-independent interactions. Last, we identify an unexpected increase in several interactions following JQ1 treatment that define negative functions for BRD3 in the regulation of rRNA synthesis and potentially RNAPII-dependent gene expression that result in decreased cell proliferation. Together, our data highlight the contributions of BET protein modules to their interactomes allowing for a better understanding of pharmacological rewiring in response to JQ1. Interactome Rewiring Following Pharmacological Targeting of BET Bromodomains.,Lambert JP, Picaud S, Fujisawa T, Hou H, Savitsky P, Uuskula-Reimand L, Gupta GD, Abdouni H, Lin ZY, Tucholska M, Knight JDR, Gonzalez-Badillo B, St-Denis N, Newman JA, Stucki M, Pelletier L, Bandeira N, Wilson MD, Filippakopoulos P, Gingras AC Mol Cell. 2018 Dec 13. pii: S1097-2765(18)30948-1. doi:, 10.1016/j.molcel.2018.11.006. PMID:30554943[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found References
|
|
Categories: Human | Arrowsmith, C H | Bountra, C | Delft, F von | Edwards, A M | Filippakopoulos, P | Krojer, T | Picaud, S | Pike, A C.W | Sorrell, F | Bromodomain | Complex | Transcription