| Structural highlights
Function
[HS71A_HUMAN] In cooperation with other chaperones, Hsp70s stabilize preexistent proteins against aggregation and mediate the folding of newly translated polypeptides in the cytosol as well as within organelles. These chaperones participate in all these processes through their ability to recognize nonnative conformations of other proteins. They bind extended peptide segments with a net hydrophobic character exposed by polypeptides during translation and membrane translocation, or following stress-induced damage. In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223).[1] [2] [3]
Publication Abstract from PubMed
The use of the tellurium-centered Anderson-Evans polyoxotungstate [TeW6O24]6- (TEW) as a crystallization additive has been described. Here, we present the use of TEW as an additive in the crystallization screening of the nucleotide binding domain (NBD) of HSP70. Crystallization screening of the HSP70 NBD in the absence of TEW using a standard commercial screen resulted in a single crystal form. An identical crystallization screen of the HSP70 NBD in the presence of TEW resulted in both the "TEW free" crystal form and an additional crystal form with a different crystal packing. TEW binding was observed in both crystal forms, either as a well-defined molecule or in overlapping alternate positions suggesting translational disorder. The structures were solved by both molecular replacement and single wavelength anomalous diffraction (SAD) using the anomalous signal of a single bound molecule of TEW. This study adds one more example of TEW binding to a protein and influencing its crystallization behavior.
The crystallization additive hexatungstotellurate promotes the crystallization of the HSP70 nucleotide binding domain into two different crystal forms.,Mac Sweeney A, Chambovey A, Wicki M, Muller M, Artico N, Lange R, Bijelic A, Breibeck J, Rompel A PLoS One. 2018 Jun 27;13(6):e0199639. doi: 10.1371/journal.pone.0199639., eCollection 2018. PMID:29949628[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Perez-Vargas J, Romero P, Lopez S, Arias CF. The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. J Virol. 2006 Apr;80(7):3322-31. PMID:16537599 doi:http://dx.doi.org/80/7/3322
- ↑ Liu X, Liu D, Qian D, Dai J, An Y, Jiang S, Stanley B, Yang J, Wang B, Liu X, Liu DX. Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells. J Biol Chem. 2012 Jun 1;287(23):19599-609. doi: 10.1074/jbc.M112.363622. Epub, 2012 Apr 23. PMID:22528486 doi:http://dx.doi.org/10.1074/jbc.M112.363622
- ↑ Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, Jinasena D, Fu J, Lin F, Chen C, Zhang J, Yu N, Li X, Shan Z, Nie J, Gao Z, Tian H, Li Y, Yao Z, Zheng Y, Park BV, Pan Z, Zhang J, Dang E, Li Z, Wang H, Luo W, Li L, Semenza GL, Zheng SG, Loser K, Tsun A, Greene MI, Pardoll DM, Pan F, Li B. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity. 2013 Aug 22;39(2):272-85. doi: 10.1016/j.immuni.2013.08.006. PMID:23973223 doi:http://dx.doi.org/10.1016/j.immuni.2013.08.006
- ↑ Mac Sweeney A, Chambovey A, Wicki M, Muller M, Artico N, Lange R, Bijelic A, Breibeck J, Rompel A. The crystallization additive hexatungstotellurate promotes the crystallization of the HSP70 nucleotide binding domain into two different crystal forms. PLoS One. 2018 Jun 27;13(6):e0199639. doi: 10.1371/journal.pone.0199639., eCollection 2018. PMID:29949628 doi:http://dx.doi.org/10.1371/journal.pone.0199639
|