| Structural highlights
6hr1 is a 2 chain structure with sequence from Aequorea victoria, Bos taurus, Homo sapiens and Oryctolagus cuniculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 1.901Å |
Ligands: | , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
CALM1_HUMAN The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14.
Function
MYLK2_RABIT Implicated in the level of global muscle contraction and cardiac function (By similarity). Phosphorylates a specific serine in the N-terminus of a myosin light chain.MYO10_BOVIN In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation (By similarity). Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as plus end-directed motor. The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate, which are then moved relative to actin filaments. Stimulates the formation and elongation of filopodia. Regulates cell shape, cell spreading and cell adhesion. Plays a role in formation of the podosome belt in osteoclasts.[1] [2] [3] [4] [5] [6] [7] [8] [9] CALM1_HUMAN Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).[10] [11] [12] [13] GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
Publication Abstract from PubMed
Chimeric fusion proteins are essential tools for protein nanotechnology. Non-optimized protein-protein connections are usually flexible and therefore unsuitable as structural building blocks. Here we show that the ER/K motif, a single alpha-helical domain (SAH), can be seamlessly fused to terminal helices of proteins, forming an extended, partially free-standing rigid helix. This enables the connection of two domains at a defined distance and orientation. We designed three constructs termed YFPnano, T4Lnano, and MoStoNano. Analysis of experimentally determined structures and molecular dynamics simulations reveals a certain degree of plasticity in the connections that allows the adaptation to crystal contact opportunities. Our data show that SAHs can be stably integrated into designed structural elements, enabling new possibilities for protein nanotechnology, for example, to improve the exposure of epitopes on nanoparticles (structural vaccinology), to engineer crystal contacts with minimal impact on construct flexibility (for the study of protein dynamics), and to design novel biomaterials.
Chimeric single alpha-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology.,Collu G, Bierig T, Krebs AS, Engilberge S, Varma N, Guixa-Gonzalez R, Sharpe T, Deupi X, Olieric V, Poghosyan E, Benoit RM Structure. 2021 Sep 24. pii: S0969-2126(21)00330-0. doi:, 10.1016/j.str.2021.09.002. PMID:34587504[14]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Homma K, Saito J, Ikebe R, Ikebe M. Motor function and regulation of myosin X. J Biol Chem. 2001 Sep 7;276(36):34348-54. Epub 2001 Jul 16. PMID:11457842 doi:http://dx.doi.org/10.1074/jbc.M104785200
- ↑ Zhang H, Berg JS, Li Z, Wang Y, Lang P, Sousa AD, Bhaskar A, Cheney RE, Stromblad S. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol. 2004 Jun;6(6):523-31. Epub 2004 May 23. PMID:15156152 doi:http://dx.doi.org/10.1038/ncb1136
- ↑ Kovacs M, Wang F, Sellers JR. Mechanism of action of myosin X, a membrane-associated molecular motor. J Biol Chem. 2005 Apr 15;280(15):15071-83. Epub 2005 Feb 10. PMID:15705568 doi:http://dx.doi.org/10.1074/jbc.M500616200
- ↑ Bohil AB, Robertson BW, Cheney RE. Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12411-6. Epub 2006 Aug 7. PMID:16894163 doi:10.1073/pnas.0602443103
- ↑ McMichael BK, Cheney RE, Lee BS. Myosin X regulates sealing zone patterning in osteoclasts through linkage of podosomes and microtubules. J Biol Chem. 2010 Mar 26;285(13):9506-15. doi: 10.1074/jbc.M109.017269. Epub 2010, Jan 17. PMID:20081229 doi:http://dx.doi.org/10.1074/jbc.M109.017269
- ↑ Sun Y, Sato O, Ruhnow F, Arsenault ME, Ikebe M, Goldman YE. Single-molecule stepping and structural dynamics of myosin X. Nat Struct Mol Biol. 2010 Apr;17(4):485-91. doi: 10.1038/nsmb.1785. Epub 2010 Apr, 4. PMID:20364131 doi:http://dx.doi.org/10.1038/nsmb.1785
- ↑ Watanabe TM, Tokuo H, Gonda K, Higuchi H, Ikebe M. Myosin-X induces filopodia by multiple elongation mechanism. J Biol Chem. 2010 Jun 18;285(25):19605-14. doi: 10.1074/jbc.M109.093864. Epub, 2010 Apr 13. PMID:20392702 doi:http://dx.doi.org/10.1074/jbc.M109.093864
- ↑ Plantard L, Arjonen A, Lock JG, Nurani G, Ivaska J, Stromblad S. PtdIns(3,4,5)P(3) is a regulator of myosin-X localization and filopodia formation. J Cell Sci. 2010 Oct 15;123(Pt 20):3525-34. doi: 10.1242/jcs.069609. PMID:20930142 doi:http://dx.doi.org/10.1242/jcs.069609
- ↑ Umeki N, Jung HS, Sakai T, Sato O, Ikebe R, Ikebe M. Phospholipid-dependent regulation of the motor activity of myosin X. Nat Struct Mol Biol. 2011 Jun 12;18(7):783-8. doi: 10.1038/nsmb.2065. PMID:21666676 doi:http://dx.doi.org/10.1038/nsmb.2065
- ↑ Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sanchez I, Dynlacht BD. CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell. 2006 Aug;17(8):3423-34. Epub 2006 Jun 7. PMID:16760425 doi:10.1091/mbc.E06-04-0371
- ↑ Reichow SL, Clemens DM, Freites JA, Nemeth-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T. Allosteric mechanism of water-channel gating by Ca-calmodulin. Nat Struct Mol Biol. 2013 Jul 28. doi: 10.1038/nsmb.2630. PMID:23893133 doi:10.1038/nsmb.2630
- ↑ Boczek NJ, Gomez-Hurtado N, Ye D, Calvert ML, Tester DJ, Kryshtal D, Hwang HS, Johnson CN, Chazin WJ, Loporcaro CG, Shah M, Papez AL, Lau YR, Kanter R, Knollmann BC, Ackerman MJ. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT Syndrome and Functional Characterization of a Novel Long QT Syndrome-Associated Calmodulin Missense Variant, E141G. Circ Cardiovasc Genet. 2016 Apr;9(2):136-146. doi:, 10.1161/CIRCGENETICS.115.001323. Epub 2016 Mar 11. PMID:26969752 doi:http://dx.doi.org/10.1161/CIRCGENETICS.115.001323
- ↑ Yu CC, Ko JS, Ai T, Tsai WC, Chen Z, Rubart M, Vatta M, Everett TH 4th, George AL Jr, Chen PS. Arrhythmogenic calmodulin mutations impede activation of small-conductance calcium-activated potassium current. Heart Rhythm. 2016 Aug;13(8):1716-23. doi: 10.1016/j.hrthm.2016.05.009. Epub 2016, May 7. PMID:27165696 doi:http://dx.doi.org/10.1016/j.hrthm.2016.05.009
- ↑ Collu G, Bierig T, Krebs AS, Engilberge S, Varma N, Guixa-Gonzalez R, Sharpe T, Deupi X, Olieric V, Poghosyan E, Benoit RM. Chimeric single alpha-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology. Structure. 2021 Sep 24. pii: S0969-2126(21)00330-0. doi:, 10.1016/j.str.2021.09.002. PMID:34587504 doi:http://dx.doi.org/10.1016/j.str.2021.09.002
|