6hrm

From Proteopedia

Jump to: navigation, search

E. coli 70S d2d8 stapled ribosome

Structural highlights

6hrm is a 10 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 2.96Å
Experimental data:Check to display Experimental Data
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RL3_ECOLI One of two assembly inititator proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit.[HAMAP-Rule:MF_01325_B]

Publication Abstract from PubMed

Orthogonal ribosomes are unnatural ribosomes that are directed towards orthogonal messenger RNAs in Escherichia coli, through an altered version of the 16S ribosomal RNA of the small subunit(1). Directed evolution of orthogonal ribosomes has provided access to new ribosomal function, and the evolved orthogonal ribosomes have enabled the encoding of multiple non-canonical amino acids into proteins(2-4). The original orthogonal ribosomes shared the pool of 23S ribosomal RNAs, contained in the large subunit, with endogenous ribosomes. Selectively directing a new 23S rRNA to an orthogonal mRNA, by controlling the association between the orthogonal 16S rRNAs and 23S rRNAs, would enable the evolution of new function in the large subunit. Previous work covalently linked orthogonal 16S rRNA and a circularly permuted 23S rRNA to create orthogonal ribosomes with low activity(5,6); however, the linked subunits in these ribosomes do not associate specifically with each other, and mediate translation by associating with endogenous subunits. Here we discover engineered orthogonal 'stapled' ribosomes (with subunits linked through an optimized RNA staple) with activities comparable to that of the parent orthogonal ribosome; they minimize association with endogenous subunits and mediate translation of orthogonal mRNAs through the association of stapled subunits. We evolve cells with genomically encoded stapled ribosomes as the sole ribosomes, which support cellular growth at similar rates to natural ribosomes. Moreover, we visualize the engineered stapled ribosome structure by cryo-electron microscopy at 3.0 A, revealing how the staple links the subunits and controls their association. We demonstrate the utility of controlling subunit association by evolving orthogonal stapled ribosomes which efficiently polymerize a sequence of monomers that the natural ribosome is intrinsically unable to translate. Our work provides a foundation for evolving the rRNA of the entire orthogonal ribosome for the encoded cellular synthesis of non-canonical biological polymers(7).

Controlling orthogonal ribosome subunit interactions enables evolution of new function.,Schmied WH, Tnimov Z, Uttamapinant C, Rae CD, Fried SD, Chin JW Nature. 2018 Dec 5. pii: 10.1038/s41586-018-0773-z. doi:, 10.1038/s41586-018-0773-z. PMID:30518861[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Schmied WH, Tnimov Z, Uttamapinant C, Rae CD, Fried SD, Chin JW. Controlling orthogonal ribosome subunit interactions enables evolution of new function. Nature. 2018 Dec 5. pii: 10.1038/s41586-018-0773-z. doi:, 10.1038/s41586-018-0773-z. PMID:30518861 doi:http://dx.doi.org/10.1038/s41586-018-0773-z

Contents


6hrm, resolution 2.96Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools