6iyc is a 5 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
[PEN2_HUMAN] Hidradenitis suppurativa. The disease is caused by mutations affecting the gene represented in this entry. [NICA_HUMAN] Hidradenitis suppurativa. The disease is caused by mutations affecting the gene represented in this entry. [PSN1_HUMAN] Defects in PSEN1 are a cause of Alzheimer disease type 3 (AD3) [MIM:607822]. AD3 is a familial early-onset form of Alzheimer disease. Alzheimer disease is a neurodegenerative disorder characterized by progressive dementia, loss of cognitive abilities, and deposition of fibrillar amyloid proteins as intraneuronal neurofibrillary tangles, extracellular amyloid plaques and vascular amyloid deposits. The major constituent of these plaques is the neurotoxic amyloid-beta-APP 40-42 peptide (s), derived proteolytically from the transmembrane precursor protein APP by sequential secretase processing. The cytotoxic C-terminal fragments (CTFs) and the caspase-cleaved products such as C31 derived from APP, are also implicated in neuronal death.[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27] [:][28][29][30][31][32] Defects in PSEN1 are a cause of frontotemporal dementia (FTD) [MIM:600274]. Defects in PSEN1 are the cause of cardiomyopathy dilated type 1U (CMD1U) [MIM:613694]. It is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[33] Defects in PSEN1 are the cause of familial acne inversa type 3 (ACNINV3) [MIM:613737]. A chronic relapsing inflammatory disease of the hair follicles characterized by recurrent draining sinuses, painful skin abscesses, and disfiguring scars. Manifestations typically appear after puberty.[34] [A4_HUMAN] Defects in APP are the cause of Alzheimer disease type 1 (AD1) [MIM:104300]. AD1 is a familial early-onset form of Alzheimer disease. It can be associated with cerebral amyloid angiopathy. Alzheimer disease is a neurodegenerative disorder characterized by progressive dementia, loss of cognitive abilities, and deposition of fibrillar amyloid proteins as intraneuronal neurofibrillary tangles, extracellular amyloid plaques and vascular amyloid deposits. The major constituent of these plaques is the neurotoxic amyloid-beta-APP 40-42 peptide (s), derived proteolytically from the transmembrane precursor protein APP by sequential secretase processing. The cytotoxic C-terminal fragments (CTFs) and the caspase-cleaved products such as C31 derived from APP, are also implicated in neuronal death.[35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60] Defects in APP are the cause of cerebral amyloid angiopathy APP-related (CAA-APP) [MIM:605714]. A hereditary localized amyloidosis due to amyloid-beta A4 peptide(s) deposition in the cerebral vessels. The principal clinical characteristics are recurrent cerebral and cerebellar hemorrhages, recurrent strokes, cerebral ischemia, cerebral infarction, and progressive mental deterioration. Patients develop cerebral hemorrhage because of the severe cerebral amyloid angiopathy. Parenchymal amyloid deposits are rare and largely in the form of pre-amyloid lesions or diffuse plaque-like structures. They are Congo red negative and lack the dense amyloid cores commonly present in Alzheimer disease. Some affected individuals manifest progressive aphasic dementia, leukoencephalopathy, and occipital calcifications.[61][62][63][64][65]
Function
[PEN2_HUMAN] Essential subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (beta-amyloid precursor protein). Probably represents the last step of maturation of gamma-secretase, facilitating endoproteolysis of presenilin and conferring gamma-secretase activity.[66][67] [NICA_HUMAN] Essential subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (beta-amyloid precursor protein). It probably represents a stabilizing cofactor required for the assembly of the gamma-secretase complex. [APH1A_HUMAN] Essential subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral proteins such as Notch receptors and APP (beta-amyloid precursor protein). It probably represents a stabilizing cofactor for the presenilin homodimer that promotes the formation of a stable complex.[68][69][70] [PSN1_HUMAN] Probable catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (beta-amyloid precursor protein). Requires the other members of the gamma-secretase complex to have a protease activity. May play a role in intracellular signaling and gene expression or in linking chromatin to the nuclear membrane. Stimulates cell-cell adhesion though its association with the E-cadherin/catenin complex. Under conditions of apoptosis or calcium influx, cleaves E-cadherin promoting the disassembly of the E-cadherin/catenin complex and increasing the pool of cytoplasmic beta-catenin, thus negatively regulating Wnt signaling. May also play a role in hematopoiesis.[71][72][73][74][75][76][77][78] [A4_HUMAN] Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1.[79][80][81][82][83] Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with Also bind GPC1 in lipid rafts.[84][85][86][87][88] Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain (By similarity).[89][90][91][92][93] The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.[94][95][96][97][98] N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6).[99][100][101][102][103]
Publication Abstract from PubMed
Cleavage of amyloid precursor protein (APP) by the intramembrane protease gamma-secretase is linked to Alzheimer's disease (AD). We report an atomic structure of human gamma-secretase in complex with a transmembrane (TM) APP fragment at 2.6-angstrom resolution. The TM helix of APP closely interacts with five surrounding TMs of PS1 (the catalytic subunit of gamma-secretase). A hybrid beta sheet, which is formed by a beta strand from APP and two beta strands from PS1, guides gamma-secretase to the scissile peptide bond of APP between its TM and beta strand. Residues at the interface between PS1 and APP are heavily targeted by recurring mutations from AD patients. This structure, together with that of gamma-secretase bound to Notch, reveal contrasting features of substrate binding, which may be applied toward the design of substrate-specific inhibitors.
Recognition of the amyloid precursor protein by human gamma-secretase.,Zhou R, Yang G, Guo X, Zhou Q, Lei J, Shi Y Science. 2019 Feb 15;363(6428). pii: science.aaw0930. doi:, 10.1126/science.aaw0930. Epub 2019 Jan 10. PMID:30630874[104]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Nielsen AL, Holm IE, Johansen M, Bonven B, Jorgensen P, Jorgensen AL. A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J Biol Chem. 2002 Aug 16;277(33):29983-91. Epub 2002 Jun 10. PMID:12058025 doi:10.1074/jbc.M112121200
↑ Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature. 1995 Jun 29;375(6534):754-60. PMID:7596406 doi:http://dx.doi.org/10.1038/375754a0
↑ Cruts M, Backhovens H, Wang SY, Van Gassen G, Theuns J, De Jonghe CD, Wehnert A, De Voecht J, De Winter G, Cras P, et al.. Molecular genetic analysis of familial early-onset Alzheimer's disease linked to chromosome 14q24.3. Hum Mol Genet. 1995 Dec;4(12):2363-71. PMID:8634711
↑ Campion D, Flaman JM, Brice A, Hannequin D, Dubois B, Martin C, Moreau V, Charbonnier F, Didierjean O, Tardieu S, et al.. Mutations of the presenilin I gene in families with early-onset Alzheimer's disease. Hum Mol Genet. 1995 Dec;4(12):2373-7. PMID:8634712
↑ Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, et al.. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature. 1995 Aug 31;376(6543):775-8. PMID:7651536 doi:http://dx.doi.org/10.1038/376775a0
↑ . The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Alzheimer's Disease Collaborative Group. Nat Genet. 1995 Oct;11(2):219-22. PMID:7550356 doi:http://dx.doi.org/10.1038/ng1095-219
↑ Kamino K, Sato S, Sakaki Y, Yoshiiwa A, Nishiwaki Y, Takeda M, Tanabe H, Nishimura T, Ii K, St George-Hyslop PH, Miki T, Ogihara T. Three different mutations of presenilin 1 gene in early-onset Alzheimer's disease families. Neurosci Lett. 1996 Apr 26;208(3):195-8. PMID:8733303
↑ Crook R, Ellis R, Shanks M, Thal LJ, Perez-Tur J, Baker M, Hutton M, Haltia T, Hardy J, Galasko D. Early-onset Alzheimer's disease with a presenilin-1 mutation at the site corresponding to the Volga German presenilin-2 mutation. Ann Neurol. 1997 Jul;42(1):124-8. PMID:9225696 doi:10.1002/ana.410420121
↑ Lendon CL, Martinez A, Behrens IM, Kosik KS, Madrigal L, Norton J, Neuman R, Myers A, Busfield F, Wragg M, Arcos M, Arango Viana JC, Ossa J, Ruiz A, Goate AM, Lopera F. E280A PS-1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles. Hum Mutat. 1997;10(3):186-95. PMID:9298817 doi:<186::AID-HUMU2>3.0.CO;2-H 10.1002/(SICI)1098-1004(1997)10:3<186::AID-HUMU2>3.0.CO;2-H
↑ Kwok JB, Taddei K, Hallupp M, Fisher C, Brooks WS, Broe GA, Hardy J, Fulham MJ, Nicholson GA, Stell R, St George Hyslop PH, Fraser PE, Kakulas B, Clarnette R, Relkin N, Gandy SE, Schofield PR, Martins RN. Two novel (M233T and R278T) presenilin-1 mutations in early-onset Alzheimer's disease pedigrees and preliminary evidence for association of presenilin-1 mutations with a novel phenotype. Neuroreport. 1997 Apr 14;8(6):1537-42. PMID:9172170
↑ Ramirez-Duenas MG, Rogaeva EA, Leal CA, Lin C, Ramirez-Casillas GA, Hernandez-Romo JA, St George-Hyslop PH, Cantu JM. A novel Leu171Pro mutation in presenilin-1 gene in a Mexican family with early onset Alzheimer disease. Ann Genet. 1998;41(3):149-53. PMID:9833068
↑ Cruts M, van Duijn CM, Backhovens H, Van den Broeck M, Wehnert A, Serneels S, Sherrington R, Hutton M, Hardy J, St George-Hyslop PH, Hofman A, Van Broeckhoven C. Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. Hum Mol Genet. 1998 Jan;7(1):43-51. PMID:9384602
↑ Besancon R, Lorenzi A, Cruts M, Radawiec S, Sturtz F, Broussolle E, Chazot G, van Broeckhoven C, Chamba G, Vandenberghe A. Missense mutation in exon 11 (Codon 378) of the presenilin-1 gene in a French family with early-onset Alzheimer's disease and transmission study by mismatch enhanced allele specific amplification. Mutations in brief no. 141. Online. besancon@rockefeller1.univ.lyon1.fr. Hum Mutat. 1998;11(6):481. PMID:10200054 doi:<481::AID-HUMU12>3.0.CO;2-Q 10.1002/(SICI)1098-1004(1998)11:6<481::AID-HUMU12>3.0.CO;2-Q
↑ Dumanchin C, Brice A, Campion D, Hannequin D, Martin C, Moreau V, Agid Y, Martinez M, Clerget-Darpoux F, Frebourg T. De novo presenilin 1 mutations are rare in clinically sporadic, early onset Alzheimer's disease cases. French Alzheimer's Disease Study Group. J Med Genet. 1998 Aug;35(8):672-3. PMID:9719376
↑ Wisniewski T, Dowjat WK, Buxbaum JD, Khorkova O, Efthimiopoulos S, Kulczycki J, Lojkowska W, Wegiel J, Wisniewski HM, Frangione B. A novel Polish presenilin-1 mutation (P117L) is associated with familial Alzheimer's disease and leads to death as early as the age of 28 years. Neuroreport. 1998 Jan 26;9(2):217-21. PMID:9507958
↑ Taddei K, Kwok JB, Kril JJ, Halliday GM, Creasey H, Hallupp M, Fisher C, Brooks WS, Chung C, Andrews C, Masters CL, Schofield PR, Martins RN. Two novel presenilin-1 mutations (Ser169Leu and Pro436Gln) associated with very early onset Alzheimer's disease. Neuroreport. 1998 Oct 5;9(14):3335-9. PMID:9831473
↑ Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, Thomas-Anterion C, Michon A, Martin C, Charbonnier F, Raux G, Camuzat A, Penet C, Mesnage V, Martinez M, Clerget-Darpoux F, Brice A, Frebourg T. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet. 1999 Sep;65(3):664-70. PMID:10441572 doi:S0002-9297(07)62317-9
↑ Sugiyama N, Suzuki K, Matsumura T, Kawanishi C, Onishi H, Yamada Y, Iseki E, Kosaka K. A novel missense mutation (G209R) in exon 8 of the presenilin 1 gene in a Japanese family with presenile familial Alzheimer's disease. Mutation in brief no. 254. Online. Hum Mutat. 1999;14(1):90. PMID:10447269 doi:<90::AID-HUMU19>3.0.CO;2-S 10.1002/(SICI)1098-1004(1999)14:1<90::AID-HUMU19>3.0.CO;2-S
↑ Ezquerra M, Carnero C, Blesa R, Gelpi JL, Ballesta F, Oliva R. A presenilin 1 mutation (Ser169Pro) associated with early-onset AD and myoclonic seizures. Neurology. 1999 Feb;52(3):566-70. PMID:10025789
↑ Smith MJ, Gardner RJ, Knight MA, Forrest SM, Beyreuther K, Storey E, McLean CA, Cotton RG, Cappal R, Masters CL. Early-onset Alzheimer's disease caused by a novel mutation at codon 219 of the presenilin-1 gene. Neuroreport. 1999 Feb 25;10(3):503-7. PMID:10208579
↑ Romero I, Jorgensen P, Bolwig G, Fraser PE, Rogaeva E, Mann D, Havsager AM, Jorgensen AL. A presenilin-1 Thr116Asn substitution in a family with early-onset Alzheimer's disease. Neuroreport. 1999 Aug 2;10(11):2255-60. PMID:10439444
↑ Finckh U, Muller-Thomsen T, Mann U, Eggers C, Marksteiner J, Meins W, Binetti G, Alberici A, Hock C, Nitsch RM, Gal A. High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes. Am J Hum Genet. 2000 Jan;66(1):110-7. PMID:10631141 doi:S0002-9297(07)62237-X
↑ Yasuda M, Maeda S, Kawamata T, Tamaoka A, Yamamoto Y, Kuroda S, Maeda K, Tanaka C. Novel presenilin-1 mutation with widespread cortical amyloid deposition but limited cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry. 2000 Feb;68(2):220-3. PMID:10644793
↑ Lewis PA, Perez-Tur J, Golde TE, Hardy J. The presenilin 1 C92S mutation increases abeta 42 production. Biochem Biophys Res Commun. 2000 Oct 14;277(1):261-3. PMID:11027672 doi:10.1006/bbrc.2000.3646
↑ Athan ES, Williamson J, Ciappa A, Santana V, Romas SN, Lee JH, Rondon H, Lantigua RA, Medrano M, Torres M, Arawaka S, Rogaeva E, Song YQ, Sato C, Kawarai T, Fafel KC, Boss MA, Seltzer WK, Stern Y, St George-Hyslop P, Tycko B, Mayeux R. A founder mutation in presenilin 1 causing early-onset Alzheimer disease in unrelated Caribbean Hispanic families. JAMA. 2001 Nov 14;286(18):2257-63. PMID:11710891
↑ Matsubara-Tsutsui M, Yasuda M, Yamagata H, Nomura T, Taguchi K, Kohara K, Miyoshi K, Miki T. Molecular evidence of presenilin 1 mutation in familial early onset dementia. Am J Med Genet. 2002 Apr 8;114(3):292-8. PMID:11920851
↑ Moehlmann T, Winkler E, Xia X, Edbauer D, Murrell J, Capell A, Kaether C, Zheng H, Ghetti B, Haass C, Steiner H. Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on Abeta 42 production. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8025-30. Epub 2002 Jun 4. PMID:12048239 doi:10.1073/pnas.112686799
↑ Bertoli Avella AM, Marcheco Teruel B, Llibre Rodriguez JJ, Gomez Viera N, Borrajero Martinez I, Severijnen EA, Joosse M, van Duijn CM, Heredero Baute L, Heutink P. A novel presenilin 1 mutation (L174 M) in a large Cuban family with early onset Alzheimer disease. Neurogenetics. 2002 Oct;4(2):97-104. PMID:12484344
↑ Kwok JB, Halliday GM, Brooks WS, Dolios G, Laudon H, Murayama O, Hallupp M, Badenhop RF, Vickers J, Wang R, Naslund J, Takashima A, Gandy SE, Schofield PR. Presenilin-1 mutation L271V results in altered exon 8 splicing and Alzheimer's disease with non-cored plaques and no neuritic dystrophy. J Biol Chem. 2003 Feb 28;278(9):6748-54. Epub 2002 Dec 19. PMID:12493737 doi:10.1074/jbc.M211827200
↑ Li D, Parks SB, Kushner JD, Nauman D, Burgess D, Ludwigsen S, Partain J, Nixon RR, Allen CN, Irwin RP, Jakobs PM, Litt M, Hershberger RE. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am J Hum Genet. 2006 Dec;79(6):1030-9. Epub 2006 Oct 24. PMID:17186461 doi:10.1086/509900
↑ Wang B, Yang W, Wen W, Sun J, Su B, Liu B, Ma D, Lv D, Wen Y, Qu T, Chen M, Sun M, Shen Y, Zhang X. Gamma-secretase gene mutations in familial acne inversa. Science. 2010 Nov 19;330(6007):1065. doi: 10.1126/science.1196284. Epub 2010 Oct , 7. PMID:20929727 doi:10.1126/science.1196284
↑ Denman RB, Rosenzcwaig R, Miller DL. A system for studying the effect(s) of familial Alzheimer disease mutations on the processing of the beta-amyloid peptide precursor. Biochem Biophys Res Commun. 1993 Apr 15;192(1):96-103. PMID:8476439 doi:http://dx.doi.org/10.1006/bbrc.1993.1386
↑ Wakutani Y, Watanabe K, Adachi Y, Wada-Isoe K, Urakami K, Ninomiya H, Saido TC, Hashimoto T, Iwatsubo T, Nakashima K. Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2004 Jul;75(7):1039-42. PMID:15201367
↑ Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, et al.. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 1991 Feb 21;349(6311):704-6. PMID:1671712 doi:http://dx.doi.org/10.1038/349704a0
↑ Yoshioka K, Miki T, Katsuya T, Ogihara T, Sakaki Y. The 717Val----Ile substitution in amyloid precursor protein is associated with familial Alzheimer's disease regardless of ethnic groups. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1141-6. PMID:1908231
↑ Naruse S, Igarashi S, Kobayashi H, Aoki K, Inuzuka T, Kaneko K, Shimizu T, Iihara K, Kojima T, Miyatake T, et al.. Mis-sense mutation Val----Ile in exon 17 of amyloid precursor protein gene in Japanese familial Alzheimer's disease. Lancet. 1991 Apr 20;337(8747):978-9. PMID:1678058
↑ Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J, et al.. Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature. 1991 Oct 31;353(6347):844-6. PMID:1944558 doi:http://dx.doi.org/10.1038/353844a0
↑ Murrell J, Farlow M, Ghetti B, Benson MD. A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science. 1991 Oct 4;254(5028):97-9. PMID:1925564
↑ Kamino K, Orr HT, Payami H, Wijsman EM, Alonso ME, Pulst SM, Anderson L, O'dahl S, Nemens E, White JA, et al.. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am J Hum Genet. 1992 Nov;51(5):998-1014. PMID:1415269
↑ Hendriks L, van Duijn CM, Cras P, Cruts M, Van Hul W, van Harskamp F, Warren A, McInnis MG, Antonarakis SE, Martin JJ, et al.. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat Genet. 1992 Jun;1(3):218-21. PMID:1303239 doi:http://dx.doi.org/10.1038/ng0692-218
↑ Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet. 1992 Aug;1(5):345-7. PMID:1302033 doi:http://dx.doi.org/10.1038/ng0892-345
↑ Carter DA, Desmarais E, Bellis M, Campion D, Clerget-Darpoux F, Brice A, Agid Y, Jaillard-Serradt A, Mallet J. More missense in amyloid gene. Nat Genet. 1992 Dec;2(4):255-6. PMID:1303275 doi:http://dx.doi.org/10.1038/ng1292-255
↑ Liepnieks JJ, Ghetti B, Farlow M, Roses AD, Benson MD. Characterization of amyloid fibril beta-peptide in familial Alzheimer's disease with APP717 mutations. Biochem Biophys Res Commun. 1993 Dec 15;197(2):386-92. PMID:8267572
↑ Farlow M, Murrell J, Ghetti B, Unverzagt F, Zeldenrust S, Benson M. Clinical characteristics in a kindred with early-onset Alzheimer's disease and their linkage to a G-->T change at position 2149 of the amyloid precursor protein gene. Neurology. 1994 Jan;44(1):105-11. PMID:8290042
↑ Brooks WS, Martins RN, De Voecht J, Nicholson GA, Schofield PR, Kwok JB, Fisher C, Yeung LU, Van Broeckhoven C. A mutation in codon 717 of the amyloid precursor protein gene in an Australian family with Alzheimer's disease. Neurosci Lett. 1995 Oct 27;199(3):183-6. PMID:8577393
↑ Eckman CB, Mehta ND, Crook R, Perez-tur J, Prihar G, Pfeiffer E, Graff-Radford N, Hinder P, Yager D, Zenk B, Refolo LM, Prada CM, Younkin SG, Hutton M, Hardy J. A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum Mol Genet. 1997 Nov;6(12):2087-9. PMID:9328472
↑ Cras P, van Harskamp F, Hendriks L, Ceuterick C, van Duijn CM, Stefanko SZ, Hofman A, Kros JM, Van Broeckhoven C, Martin JJ. Presenile Alzheimer dementia characterized by amyloid angiopathy and large amyloid core type senile plaques in the APP 692Ala-->Gly mutation. Acta Neuropathol. 1998 Sep;96(3):253-60. PMID:9754958
↑ Ancolio K, Dumanchin C, Barelli H, Warter JM, Brice A, Campion D, Frebourg T, Checler F. Unusual phenotypic alteration of beta amyloid precursor protein (betaAPP) maturation by a new Val-715 --> Met betaAPP-770 mutation responsible for probable early-onset Alzheimer's disease. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4119-24. PMID:10097173
↑ Finckh U, Muller-Thomsen T, Mann U, Eggers C, Marksteiner J, Meins W, Binetti G, Alberici A, Hock C, Nitsch RM, Gal A. High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes. Am J Hum Genet. 2000 Jan;66(1):110-7. PMID:10631141 doi:S0002-9297(07)62237-X
↑ Kwok JB, Li QX, Hallupp M, Whyte S, Ames D, Beyreuther K, Masters CL, Schofield PR. Novel Leu723Pro amyloid precursor protein mutation increases amyloid beta42(43) peptide levels and induces apoptosis. Ann Neurol. 2000 Feb;47(2):249-53. PMID:10665499
↑ Murrell JR, Hake AM, Quaid KA, Farlow MR, Ghetti B. Early-onset Alzheimer disease caused by a new mutation (V717L) in the amyloid precursor protein gene. Arch Neurol. 2000 Jun;57(6):885-7. PMID:10867787
↑ Kumar-Singh S, De Jonghe C, Cruts M, Kleinert R, Wang R, Mercken M, De Strooper B, Vanderstichele H, Lofgren A, Vanderhoeven I, Backhovens H, Vanmechelen E, Kroisel PM, Van Broeckhoven C. Nonfibrillar diffuse amyloid deposition due to a gamma(42)-secretase site mutation points to an essential role for N-truncated A beta(42) in Alzheimer's disease. Hum Mol Genet. 2000 Nov 1;9(18):2589-98. PMID:11063718
↑ Walsh DM, Hartley DM, Condron MM, Selkoe DJ, Teplow DB. In vitro studies of amyloid beta-protein fibril assembly and toxicity provide clues to the aetiology of Flemish variant (Ala692-->Gly) Alzheimer's disease. Biochem J. 2001 May 1;355(Pt 3):869-77. PMID:11311152
↑ Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J, Lannfelt L. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat Neurosci. 2001 Sep;4(9):887-93. PMID:11528419 doi:10.1038/nn0901-887
↑ Pasalar P, Najmabadi H, Noorian AR, Moghimi B, Jannati A, Soltanzadeh A, Krefft T, Crook R, Hardy J. An Iranian family with Alzheimer's disease caused by a novel APP mutation (Thr714Ala). Neurology. 2002 May 28;58(10):1574-5. PMID:12034808
↑ Rossi G, Giaccone G, Maletta R, Morbin M, Capobianco R, Mangieri M, Giovagnoli AR, Bizzi A, Tomaino C, Perri M, Di Natale M, Tagliavini F, Bugiani O, Bruni AC. A family with Alzheimer disease and strokes associated with A713T mutation of the APP gene. Neurology. 2004 Sep 14;63(5):910-2. PMID:15365148
↑ Edwards-Lee T, Ringman JM, Chung J, Werner J, Morgan A, St George Hyslop P, Thompson P, Dutton R, Mlikotic A, Rogaeva E, Hardy J. An African American family with early-onset Alzheimer disease and an APP (T714I) mutation. Neurology. 2005 Jan 25;64(2):377-9. PMID:15668448 doi:64/2/377
↑ Miravalle L, Tokuda T, Chiarle R, Giaccone G, Bugiani O, Tagliavini F, Frangione B, Ghiso J. Substitutions at codon 22 of Alzheimer's abeta peptide induce diverse conformational changes and apoptotic effects in human cerebral endothelial cells. J Biol Chem. 2000 Sep 1;275(35):27110-6. PMID:10821838 doi:10.1074/jbc.M003154200
↑ Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG, Bots GT, Luyendijk W, Frangione B. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science. 1990 Jun 1;248(4959):1124-6. PMID:2111584
↑ Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol. 2001 Jun;49(6):697-705. PMID:11409420
↑ Greenberg SM, Shin Y, Grabowski TJ, Cooper GE, Rebeck GW, Iglesias S, Chapon F, Tournier-Lasserve E, Baron JC. Hemorrhagic stroke associated with the Iowa amyloid precursor protein mutation. Neurology. 2003 Mar 25;60(6):1020-2. PMID:12654973
↑ Obici L, Demarchi A, de Rosa G, Bellotti V, Marciano S, Donadei S, Arbustini E, Palladini G, Diegoli M, Genovese E, Ferrari G, Coverlizza S, Merlini G. A novel AbetaPP mutation exclusively associated with cerebral amyloid angiopathy. Ann Neurol. 2005 Oct;58(4):639-44. PMID:16178030 doi:10.1002/ana.20571
↑ Luo WJ, Wang H, Li H, Kim BS, Shah S, Lee HJ, Thinakaran G, Kim TW, Yu G, Xu H. PEN-2 and APH-1 coordinately regulate proteolytic processing of presenilin 1. J Biol Chem. 2003 Mar 7;278(10):7850-4. Epub 2003 Jan 8. PMID:12522139 doi:http://dx.doi.org/10.1074/jbc.C200648200
↑ Marlow L, Canet RM, Haugabook SJ, Hardy JA, Lahiri DK, Sambamurti K. APH1, PEN2, and Nicastrin increase Abeta levels and gamma-secretase activity. Biochem Biophys Res Commun. 2003 Jun 6;305(3):502-9. PMID:12763021
↑ Lee SF, Shah S, Li H, Yu C, Han W, Yu G. Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch. J Biol Chem. 2002 Nov 22;277(47):45013-9. Epub 2002 Sep 23. PMID:12297508 doi:http://dx.doi.org/10.1074/jbc.M208164200
↑ Luo WJ, Wang H, Li H, Kim BS, Shah S, Lee HJ, Thinakaran G, Kim TW, Yu G, Xu H. PEN-2 and APH-1 coordinately regulate proteolytic processing of presenilin 1. J Biol Chem. 2003 Mar 7;278(10):7850-4. Epub 2003 Jan 8. PMID:12522139 doi:http://dx.doi.org/10.1074/jbc.C200648200
↑ Marlow L, Canet RM, Haugabook SJ, Hardy JA, Lahiri DK, Sambamurti K. APH1, PEN2, and Nicastrin increase Abeta levels and gamma-secretase activity. Biochem Biophys Res Commun. 2003 Jun 6;305(3):502-9. PMID:12763021
↑ Steiner H, Romig H, Pesold B, Philipp U, Baader M, Citron M, Loetscher H, Jacobsen H, Haass C. Amyloidogenic function of the Alzheimer's disease-associated presenilin 1 in the absence of endoproteolysis. Biochemistry. 1999 Nov 2;38(44):14600-5. PMID:10545183
↑ Ray WJ, Yao M, Mumm J, Schroeter EH, Saftig P, Wolfe M, Selkoe DJ, Kopan R, Goate AM. Cell surface presenilin-1 participates in the gamma-secretase-like proteolysis of Notch. J Biol Chem. 1999 Dec 17;274(51):36801-7. PMID:10593990
↑ Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature. 1999 Apr 8;398(6727):513-7. PMID:10206644 doi:10.1038/19077
↑ Berezovska O, Jack C, McLean P, Aster JC, Hicks C, Xia W, Wolfe MS, Kimberly WT, Weinmaster G, Selkoe DJ, Hyman BT. Aspartate mutations in presenilin and gamma-secretase inhibitors both impair notch1 proteolysis and nuclear translocation with relative preservation of notch1 signaling. J Neurochem. 2000 Aug;75(2):583-93. PMID:10899933
↑ Kulic L, Walter J, Multhaup G, Teplow DB, Baumeister R, Romig H, Capell A, Steiner H, Haass C. Separation of presenilin function in amyloid beta-peptide generation and endoproteolysis of Notch. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5913-8. PMID:10811883 doi:10.1073/pnas.100049897
↑ Baki L, Marambaud P, Efthimiopoulos S, Georgakopoulos A, Wen P, Cui W, Shioi J, Koo E, Ozawa M, Friedrich VL Jr, Robakis NK. Presenilin-1 binds cytoplasmic epithelial cadherin, inhibits cadherin/p120 association, and regulates stability and function of the cadherin/catenin adhesion complex. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2381-6. PMID:11226248 doi:10.1073/pnas.041603398
↑ Wrigley JD, Nunn EJ, Nyabi O, Clarke EE, Hunt P, Nadin A, De Strooper B, Shearman MS, Beher D. Conserved residues within the putative active site of gamma-secretase differentially influence enzyme activity and inhibitor binding. J Neurochem. 2004 Sep;90(6):1312-20. PMID:15341515 doi:10.1111/j.1471-4159.2004.02596.x
↑ Wang J, Beher D, Nyborg AC, Shearman MS, Golde TE, Goate A. C-terminal PAL motif of presenilin and presenilin homologues required for normal active site conformation. J Neurochem. 2006 Jan;96(1):218-27. Epub 2005 Nov 23. PMID:16305624 doi:JNC3548
↑ Walter MF, Mason PE, Mason RP. Alzheimer's disease amyloid beta peptide 25-35 inhibits lipid peroxidation as a result of its membrane interactions. Biochem Biophys Res Commun. 1997 Apr 28;233(3):760-4. PMID:9168929 doi:10.1006/bbrc.1997.6547
↑ Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem. 2001 Oct 26;276(43):40288-92. Epub 2001 Sep 5. PMID:11544248 doi:10.1074/jbc.C100447200
↑ Rank KB, Pauley AM, Bhattacharya K, Wang Z, Evans DB, Fleck TJ, Johnston JA, Sharma SK. Direct interaction of soluble human recombinant tau protein with Abeta 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II. FEBS Lett. 2002 Mar 13;514(2-3):263-8. PMID:11943163
↑ Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009 Feb 19;457(7232):981-9. PMID:19225519 doi:10.1038/nature07767
↑ Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, Sosunov A, McKhann G, Funatsu Y, Nakamichi N, Nagai T, Mizoguchi H, Ibi D, Hori O, Ogawa S, Stern DM, Yamada K, Yan SS. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20021-6. doi:, 10.1073/pnas.0905686106. Epub 2009 Nov 9. PMID:19901339 doi:10.1073/pnas.0905686106
↑ Walter MF, Mason PE, Mason RP. Alzheimer's disease amyloid beta peptide 25-35 inhibits lipid peroxidation as a result of its membrane interactions. Biochem Biophys Res Commun. 1997 Apr 28;233(3):760-4. PMID:9168929 doi:10.1006/bbrc.1997.6547
↑ Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem. 2001 Oct 26;276(43):40288-92. Epub 2001 Sep 5. PMID:11544248 doi:10.1074/jbc.C100447200
↑ Rank KB, Pauley AM, Bhattacharya K, Wang Z, Evans DB, Fleck TJ, Johnston JA, Sharma SK. Direct interaction of soluble human recombinant tau protein with Abeta 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II. FEBS Lett. 2002 Mar 13;514(2-3):263-8. PMID:11943163
↑ Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009 Feb 19;457(7232):981-9. PMID:19225519 doi:10.1038/nature07767
↑ Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, Sosunov A, McKhann G, Funatsu Y, Nakamichi N, Nagai T, Mizoguchi H, Ibi D, Hori O, Ogawa S, Stern DM, Yamada K, Yan SS. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20021-6. doi:, 10.1073/pnas.0905686106. Epub 2009 Nov 9. PMID:19901339 doi:10.1073/pnas.0905686106
↑ Walter MF, Mason PE, Mason RP. Alzheimer's disease amyloid beta peptide 25-35 inhibits lipid peroxidation as a result of its membrane interactions. Biochem Biophys Res Commun. 1997 Apr 28;233(3):760-4. PMID:9168929 doi:10.1006/bbrc.1997.6547
↑ Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem. 2001 Oct 26;276(43):40288-92. Epub 2001 Sep 5. PMID:11544248 doi:10.1074/jbc.C100447200
↑ Rank KB, Pauley AM, Bhattacharya K, Wang Z, Evans DB, Fleck TJ, Johnston JA, Sharma SK. Direct interaction of soluble human recombinant tau protein with Abeta 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II. FEBS Lett. 2002 Mar 13;514(2-3):263-8. PMID:11943163
↑ Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009 Feb 19;457(7232):981-9. PMID:19225519 doi:10.1038/nature07767
↑ Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, Sosunov A, McKhann G, Funatsu Y, Nakamichi N, Nagai T, Mizoguchi H, Ibi D, Hori O, Ogawa S, Stern DM, Yamada K, Yan SS. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20021-6. doi:, 10.1073/pnas.0905686106. Epub 2009 Nov 9. PMID:19901339 doi:10.1073/pnas.0905686106
↑ Walter MF, Mason PE, Mason RP. Alzheimer's disease amyloid beta peptide 25-35 inhibits lipid peroxidation as a result of its membrane interactions. Biochem Biophys Res Commun. 1997 Apr 28;233(3):760-4. PMID:9168929 doi:10.1006/bbrc.1997.6547
↑ Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem. 2001 Oct 26;276(43):40288-92. Epub 2001 Sep 5. PMID:11544248 doi:10.1074/jbc.C100447200
↑ Rank KB, Pauley AM, Bhattacharya K, Wang Z, Evans DB, Fleck TJ, Johnston JA, Sharma SK. Direct interaction of soluble human recombinant tau protein with Abeta 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II. FEBS Lett. 2002 Mar 13;514(2-3):263-8. PMID:11943163
↑ Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009 Feb 19;457(7232):981-9. PMID:19225519 doi:10.1038/nature07767
↑ Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, Sosunov A, McKhann G, Funatsu Y, Nakamichi N, Nagai T, Mizoguchi H, Ibi D, Hori O, Ogawa S, Stern DM, Yamada K, Yan SS. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20021-6. doi:, 10.1073/pnas.0905686106. Epub 2009 Nov 9. PMID:19901339 doi:10.1073/pnas.0905686106
↑ Walter MF, Mason PE, Mason RP. Alzheimer's disease amyloid beta peptide 25-35 inhibits lipid peroxidation as a result of its membrane interactions. Biochem Biophys Res Commun. 1997 Apr 28;233(3):760-4. PMID:9168929 doi:10.1006/bbrc.1997.6547
↑ Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem. 2001 Oct 26;276(43):40288-92. Epub 2001 Sep 5. PMID:11544248 doi:10.1074/jbc.C100447200
↑ Rank KB, Pauley AM, Bhattacharya K, Wang Z, Evans DB, Fleck TJ, Johnston JA, Sharma SK. Direct interaction of soluble human recombinant tau protein with Abeta 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II. FEBS Lett. 2002 Mar 13;514(2-3):263-8. PMID:11943163
↑ Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009 Feb 19;457(7232):981-9. PMID:19225519 doi:10.1038/nature07767
↑ Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, Sosunov A, McKhann G, Funatsu Y, Nakamichi N, Nagai T, Mizoguchi H, Ibi D, Hori O, Ogawa S, Stern DM, Yamada K, Yan SS. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20021-6. doi:, 10.1073/pnas.0905686106. Epub 2009 Nov 9. PMID:19901339 doi:10.1073/pnas.0905686106
↑ Zhou R, Yang G, Guo X, Zhou Q, Lei J, Shi Y. Recognition of the amyloid precursor protein by human gamma-secretase. Science. 2019 Feb 15;363(6428). pii: science.aaw0930. doi:, 10.1126/science.aaw0930. Epub 2019 Jan 10. PMID:30630874 doi:http://dx.doi.org/10.1126/science.aaw0930