| Structural highlights
Disease
NEMO_HUMAN Defects in IKBKG are the cause of ectodermal dysplasia anhidrotic with immunodeficiency X-linked (EDAID) [MIM:300291; also known as hypohidrotic ectodermal dysplasia with immunodeficiency (HED-ID). Is a form of ectoderma dysplasia, a heterogeneous group of disorders due to abnormal development of two or more ectodermal structures. Characterized by absence of sweat glands, sparse scalp hair, rare conical teeth and immunological abnormalities resulting in severe infectious diseases.[1] [2] [3] [4] [5] [6] [7] [8] [9] Defects in IKBKG are the cause of ectodermal dysplasia anhidrotic with immunodeficiency-osteopetrosis-lymphedema (OLEDAID) [MIM:300301. Defects in IKBKG are a cause of immunodeficiency NEMO-related without anhidrotic ectodermal dysplasia (NEMOID) [MIM:300584; also called immunodeficiency without anhidrotic ectodermal dysplasia, isolated immunodeficiency or pure immunodeficiency. Patients manifest immunodeficiency not associated with other abnormalities, and resulting in increased infection susceptibility. Patients suffer from multiple episodes of infectious diseases.[10] [11] Defects in IKBKG are the cause of susceptibility to X-linked familial atypical micobacteriosis type 1 (AMCBX1) [MIM:300636; also known as X-linked disseminated atypical mycobacterial infection type 1 or X-linked susceptibility to mycobacterial disease type 1. AMCBX1 is the X-linked recessive form of Mendelian susceptibility to mycobacterial disease (MSMD). MSMD is a congenital syndrome resulting in predisposition to clinical disease caused by weakly virulent mycobacterial species, such as bacillus Calmette-Guerin vaccines and non-tuberculous, environmental mycobacteria. Patients are also susceptible to the more virulent species Mycobacterium tuberculosis.[12] [13] Defects in IKBKG are the cause of recurrent isolated invasive pneumococcal disease type 2 (IPD2) [MIM:300640. Recurrent invasive pneumococcal disease (IPD) is defined as two episodes of IPD occurring at least 1 month apart, whether caused by the same or different serotypes or strains. Recurrent IPD occurs in at least 2% of patients in most series, making IPD the most important known risk factor for subsequent IPD.[14] Defects in IKBKG are the cause of incontinentia pigmenti (IP) [MIM:308300; formerly designed familial incontinentia pigmenti type II (IP2). IP is a genodermatosis usually prenatally lethal in males. In affected females, it causes abnormalities of the skin, hair, eyes, nails, teeth, skeleton, heart, and central nervous system. The prominent skin signs occur in four classic cutaneous stages: perinatal inflammatory vesicles, verrucous patches, a distinctive pattern of hyperpigmentation and dermal scarring.[15] [16] [17] [18] [19] [20] [21] [22]
Function
NEMO_HUMAN Regulatory subunit of the IKK core complex which phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor. Its binding to scaffolding polyubiquitin seems to play a role in IKK activation by multiple signaling receptor pathways. However, the specific type of polyubiquitin recognized upon cell stimulation (either 'Lys-63'-linked or linear polyubiquitin) and its functional importance is reported conflictingly. Also considered to be a mediator for TAX activation of NF-kappa-B. Could be implicated in NF-kappa-B-mediated protection from cytokine toxicity (By similarity). Essential for viral activation of IRF3. Involved in TLR3- and IFIH1-mediated antiviral innate response; this function requires 'Lys-27'-linked polyubiquitination.[23] [24] [25]
Publication Abstract from PubMed
NEMO is an essential component in the activation of the canonical NF-kappaB pathway and exerts its function by recruiting the IkappaB kinases (IKK) to the IKK complex. Inhibition of the NEMO/IKKs interaction is an attractive therapeutic paradigm for diseases related to NF-kappaB mis-regulation, but a difficult endeavor because of the extensive protein-protein interface. Here we report the high-resolution structure of the unbound IKKbeta-binding domain of NEMO that will greatly facilitate the design of NEMO/IKK inhibitors. The structures of unbound NEMO show a closed conformation that partially occludes the three binding hot-spots and suggest a facile transition to an open state that can accommodate ligand binding. By fusing coiled-coil adaptors to the IKKbeta-binding domain of NEMO, we succeeded in creating a protein with improved solution behavior, IKKbeta-binding affinity and crystallization compatibility, which will enable the structural characterization of new NEMO/inhibitor complexes.
The IKK-binding domain of NEMO is an irregular coiled coil with a dynamic binding interface.,Barczewski AH, Ragusa MJ, Mierke DF, Pellegrini M Sci Rep. 2019 Feb 27;9(1):2950. doi: 10.1038/s41598-019-39588-2. PMID:30814588[26]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell. 2003 Nov 26;115(5):565-76. PMID:14651848
- ↑ Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol. 2006 Apr;8(4):398-406. Epub 2006 Mar 19. PMID:16547522 doi:10.1038/ncb1384
- ↑ Nanda SK, Venigalla RK, Ordureau A, Patterson-Kane JC, Powell DW, Toth R, Arthur JS, Cohen P. Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J Exp Med. 2011 Jun 6;208(6):1215-28. doi: 10.1084/jem.20102177. Epub 2011 May, 23. PMID:21606507 doi:10.1084/jem.20102177
- ↑ Lo YC, Lin SC, Rospigliosi CC, Conze DB, Wu CJ, Ashwell JD, Eliezer D, Wu H. Structural basis for recognition of diubiquitins by NEMO. Mol Cell. 2009 Mar 13;33(5):602-15. Epub 2009 Jan 29. PMID:19185524 doi:10.1016/j.molcel.2009.01.012
- ↑ Zonana J, Elder ME, Schneider LC, Orlow SJ, Moss C, Golabi M, Shapira SK, Farndon PA, Wara DW, Emmal SA, Ferguson BM. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet. 2000 Dec;67(6):1555-62. Epub 2000 Oct 24. PMID:11047757 doi:S0002-9297(07)63223-6
- ↑ Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le Deist F, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israel A, Courtois G, Casanova JL. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001 Mar;27(3):277-85. PMID:11242109 doi:10.1038/85837
- ↑ Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001 Mar;2(3):223-8. PMID:11224521 doi:10.1038/85277
- ↑ Orange JS, Brodeur SR, Jain A, Bonilla FA, Schneider LC, Kretschmer R, Nurko S, Rasmussen WL, Kohler JR, Gellis SE, Ferguson BM, Strominger JL, Zonana J, Ramesh N, Ballas ZK, Geha RS. Deficient natural killer cell cytotoxicity in patients with IKK-gamma/NEMO mutations. J Clin Invest. 2002 Jun;109(11):1501-9. PMID:12045264 doi:10.1172/JCI14858
- ↑ Orange JS, Jain A, Ballas ZK, Schneider LC, Geha RS, Bonilla FA. The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol. 2004 Apr;113(4):725-33. PMID:15100680 doi:10.1016/j.jaci.2004.01.762
- ↑ Orange JS, Jain A, Ballas ZK, Schneider LC, Geha RS, Bonilla FA. The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol. 2004 Apr;113(4):725-33. PMID:15100680 doi:10.1016/j.jaci.2004.01.762
- ↑ Orange JS, Levy O, Brodeur SR, Krzewski K, Roy RM, Niemela JE, Fleisher TA, Bonilla FA, Geha RS. Human nuclear factor kappa B essential modulator mutation can result in immunodeficiency without ectodermal dysplasia. J Allergy Clin Immunol. 2004 Sep;114(3):650-6. PMID:15356572 doi:10.1016/j.jaci.2004.06.052
- ↑ Lo YC, Lin SC, Rospigliosi CC, Conze DB, Wu CJ, Ashwell JD, Eliezer D, Wu H. Structural basis for recognition of diubiquitins by NEMO. Mol Cell. 2009 Mar 13;33(5):602-15. Epub 2009 Jan 29. PMID:19185524 doi:10.1016/j.molcel.2009.01.012
- ↑ Filipe-Santos O, Bustamante J, Haverkamp MH, Vinolo E, Ku CL, Puel A, Frucht DM, Christel K, von Bernuth H, Jouanguy E, Feinberg J, Durandy A, Senechal B, Chapgier A, Vogt G, de Beaucoudrey L, Fieschi C, Picard C, Garfa M, Chemli J, Bejaoui M, Tsolia MN, Kutukculer N, Plebani A, Notarangelo L, Bodemer C, Geissmann F, Israel A, Veron M, Knackstedt M, Barbouche R, Abel L, Magdorf K, Gendrel D, Agou F, Holland SM, Casanova JL. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med. 2006 Jul 10;203(7):1745-59. Epub 2006 Jul 3. PMID:16818673 doi:10.1084/jem.20060085
- ↑ Ku CL, Picard C, Erdos M, Jeurissen A, Bustamante J, Puel A, von Bernuth H, Filipe-Santos O, Chang HH, Lawrence T, Raes M, Marodi L, Bossuyt X, Casanova JL. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J Med Genet. 2007 Jan;44(1):16-23. Epub 2006 Sep 1. PMID:16950813 doi:jmg.2006.044446
- ↑ Ashida H, Kim M, Schmidt-Supprian M, Ma A, Ogawa M, Sasakawa C. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKgamma to dampen the host NF-kappaB-mediated inflammatory response. Nat Cell Biol. 2010 Jan;12(1):66-73; sup pp 1-9. doi: 10.1038/ncb2006. Epub 2009 , Dec 13. PMID:20010814 doi:10.1038/ncb2006
- ↑ Sebban-Benin H, Pescatore A, Fusco F, Pascuale V, Gautheron J, Yamaoka S, Moncla A, Ursini MV, Courtois G. Identification of TRAF6-dependent NEMO polyubiquitination sites through analysis of a new NEMO mutation causing incontinentia pigmenti. Hum Mol Genet. 2007 Dec 1;16(23):2805-15. Epub 2007 Aug 29. PMID:17728323 doi:10.1093/hmg/ddm237
- ↑ Lo YC, Lin SC, Rospigliosi CC, Conze DB, Wu CJ, Ashwell JD, Eliezer D, Wu H. Structural basis for recognition of diubiquitins by NEMO. Mol Cell. 2009 Mar 13;33(5):602-15. Epub 2009 Jan 29. PMID:19185524 doi:10.1016/j.molcel.2009.01.012
- ↑ Ku CL, Picard C, Erdos M, Jeurissen A, Bustamante J, Puel A, von Bernuth H, Filipe-Santos O, Chang HH, Lawrence T, Raes M, Marodi L, Bossuyt X, Casanova JL. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J Med Genet. 2007 Jan;44(1):16-23. Epub 2006 Sep 1. PMID:16950813 doi:jmg.2006.044446
- ↑ Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S, Munnich A, Israel A, Heiss NS, Klauck SM, Kioschis P, Wiemann S, Poustka A, Esposito T, Bardaro T, Gianfrancesco F, Ciccodicola A, D'Urso M, Woffendin H, Jakins T, Donnai D, Stewart H, Kenwrick SJ, Aradhya S, Yamagata T, Levy M, Lewis RA, Nelson DL. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature. 2000 May 25;405(6785):466-72. PMID:10839543 doi:10.1038/35013114
- ↑ Cordier F, Grubisha O, Traincard F, Veron M, Delepierre M, Agou F. The zinc finger of NEMO is a functional ubiquitin-binding domain. J Biol Chem. 2009 Jan 30;284(5):2902-7. doi: 10.1074/jbc.M806655200. Epub 2008, Nov 25. PMID:19033441 doi:10.1074/jbc.M806655200
- ↑ Aradhya S, Woffendin H, Jakins T, Bardaro T, Esposito T, Smahi A, Shaw C, Levy M, Munnich A, D'Urso M, Lewis RA, Kenwrick S, Nelson DL. A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum Mol Genet. 2001 Sep 15;10(19):2171-9. PMID:11590134
- ↑ Fusco F, Bardaro T, Fimiani G, Mercadante V, Miano MG, Falco G, Israel A, Courtois G, D'Urso M, Ursini MV. Molecular analysis of the genetic defect in a large cohort of IP patients and identification of novel NEMO mutations interfering with NF-kappaB activation. Hum Mol Genet. 2004 Aug 15;13(16):1763-73. Epub 2004 Jun 30. PMID:15229184 doi:10.1093/hmg/ddh192
- ↑ Zhou H, Wertz I, O'Rourke K, Ultsch M, Seshagiri S, Eby M, Xiao W, Dixit VM. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature. 2004 Jan 8;427(6970):167-71. Epub 2003 Dec 24. PMID:14695475 doi:10.1038/nature02273
- ↑ Zeng W, Xu M, Liu S, Sun L, Chen ZJ. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell. 2009 Oct 23;36(2):315-25. doi: 10.1016/j.molcel.2009.09.037. PMID:19854139 doi:10.1016/j.molcel.2009.09.037
- ↑ Arimoto K, Funami K, Saeki Y, Tanaka K, Okawa K, Takeuchi O, Akira S, Murakami Y, Shimotohno K. Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15856-61. doi:, 10.1073/pnas.1004621107. Epub 2010 Aug 19. PMID:20724660 doi:10.1073/pnas.1004621107
- ↑ Barczewski AH, Ragusa MJ, Mierke DF, Pellegrini M. The IKK-binding domain of NEMO is an irregular coiled coil with a dynamic binding interface. Sci Rep. 2019 Feb 27;9(1):2950. doi: 10.1038/s41598-019-39588-2. PMID:30814588 doi:http://dx.doi.org/10.1038/s41598-019-39588-2
|