6mnh

From Proteopedia

Jump to: navigation, search

ULK1 Unc-51 like autophagy activating kinase in complex with inhibitor BTC

Structural highlights

6mnh is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.73Å
Ligands:CL, CSO, DMS, JVD, SEP
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ULK1_HUMAN Serine/threonine-protein kinase involved in autophagy in response to starvation. Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes. Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR. Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2 and PRKAG1, leading to negatively regulate AMPK activity. May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences. Plays a role early in neuronal differentiation and is required for granule cell axon formation.[1] [2] [3]

Publication Abstract from PubMed

Increasing the success rate and throughput of drug discovery will require efficiency improvements throughout the process that is currently used in the pharmaceutical community, including the crucial step of identifying hit compounds to act as drivers for subsequent optimization. Hit identification can be carried out through large compound collection screening and often involves the generation and testing of many hypotheses based on available knowledge. In practice, hypothesis generation can involve the selection of promising chemical structures from compound collections using predictive models built from previous screening/assay results. Available physical collections, typically used during hit identification, are of the order of 10(6) compounds but represent only a small fraction of the small molecule drug-like chemical space. In an effort to survey a larger portion of chemical space and eliminate inefficiencies during hit identification, we introduce a new process, termed Idea2Data (I2D) that tightly integrates computational and experimental components of the drug discovery process. I2D provides the ability to connect a vast virtual collection of compounds readily synthesizable on automated synthesis systems with computational predictive models for the identification of promising structures. This new paradigm enables researchers to process billions of virtual molecules and select structures that can be prepared on automated systems and made available for biological testing, allowing for timely hypothesis testing and follow-up. Since its introduction, I2D has positively impacted several portfolio efforts through identification of new chemical scaffolds and functionalization of existing scaffolds. In this Innovations paper, we describe the I2D process and present an application for the discovery of new ULK inhibitors.

Idea2Data: Toward a New Paradigm for Drug Discovery.,Nicolaou CA, Humblet C, Hu H, Martin EM, Dorsey FC, Castle TM, Burton KI, Hu H, Hendle J, Hickey MJ, Duerksen J, Wang J, Erickson JA ACS Med Chem Lett. 2019 Feb 4;10(3):278-286. doi: 10.1021/acsmedchemlett.8b00488., eCollection 2019 Mar 14. PMID:30891127[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Chan EY, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol. 2009 Jan;29(1):157-71. doi: 10.1128/MCB.01082-08. Epub 2008 Oct, 20. PMID:18936157 doi:http://dx.doi.org/10.1128/MCB.01082-08
  2. Loffler AS, Alers S, Dieterle AM, Keppeler H, Franz-Wachtel M, Kundu M, Campbell DG, Wesselborg S, Alessi DR, Stork B. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy. 2011 Jul;7(7):696-706. Epub 2011 Jul 1. PMID:21460634
  3. Jung CH, Seo M, Otto NM, Kim DH. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy. 2011 Oct;7(10):1212-21. doi: 10.4161/auto.7.10.16660. Epub 2011 Oct 1. PMID:21795849 doi:http://dx.doi.org/10.4161/auto.7.10.16660
  4. Nicolaou CA, Humblet C, Hu H, Martin EM, Dorsey FC, Castle TM, Burton KI, Hu H, Hendle J, Hickey MJ, Duerksen J, Wang J, Erickson JA. Idea2Data: Toward a New Paradigm for Drug Discovery. ACS Med Chem Lett. 2019 Feb 4;10(3):278-286. doi: 10.1021/acsmedchemlett.8b00488., eCollection 2019 Mar 14. PMID:30891127 doi:http://dx.doi.org/10.1021/acsmedchemlett.8b00488

Contents


PDB ID 6mnh

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools