6njm
From Proteopedia
Architecture and subunit arrangement of native AMPA receptors
Structural highlights
FunctionGRIA3_RAT Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of glutamate (By similarity). Publication Abstract from PubMedGlutamate-gated AMPA receptors mediate the fast component of excitatory signal transduction at chemical synapses throughout all regions of the mammalian brain. AMPA receptors are tetrameric assemblies composed of four subunits, GluA1-4. Despite decades of study, the subunit composition, subunit arrangement and molecular structure of native AMPA receptors remain unknown. Here we elucidate the structures of 10 distinct native AMPA receptor complexes by single particle cryo-EM. We find that receptor subunits are arranged non stochastically, with the GluA2 subunit preferentially occupying the B and D positions of the tetramer and with triheteromeric assemblies comprising a major population of native AMPA receptors. Cryo-EM maps define the structure for S2-M4 linkers between the ligand binding and transmembrane domains, suggesting how neurotransmitter binding is coupled to ion channel gating. Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM.,Zhao Y, Chen S, Swensen AC, Qian WJ, Gouaux E Science. 2019 Apr 11. pii: science.aaw8250. doi: 10.1126/science.aaw8250. PMID:30975770[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|