6o9k

From Proteopedia

Jump to: navigation, search

70S initiation complex

Structural highlights

6o9k is a 54 chain structure with sequence from Escherichia coli and Escherichia coli . Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Experimental data:Check to display Experimental Data
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[A0A037Y8L6_ECOLX] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341][SAAS:SAAS00124822] [A0A1X3JBQ6_ECOLX] Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome.[HAMAP-Rule:MF_01367][RuleBase:RU003950] [S1D5F0_ECOLX] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA.[HAMAP-Rule:MF_00480] [D7Z9F6_ECOLX] Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_01328] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome.[HAMAP-Rule:MF_01328] [A0A080IK26_ECOLX] One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA.[HAMAP-Rule:MF_01345] [L3BXG0_ECOLX] Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit.[HAMAP-Rule:MF_00270] [A0A0G3K9Z8_ECOLX] Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors.[HAMAP-Rule:MF_00736][RuleBase:RU003979][SAAS:SAAS00731150] [E9YV59_ECOLX] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome.[HAMAP-Rule:MF_01320] [V0YP03_ECOLX] This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs.[HAMAP-Rule:MF_01333] [A0A1X3HYZ2_ECOLX] Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors.[HAMAP-Rule:MF_00362][SAAS:SAAS01154773] [D7Z9G0_ECOLX] The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome.[HAMAP-Rule:MF_01331] This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g., L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome.[HAMAP-Rule:MF_01331][RuleBase:RU004008] [A0A090BZT4_ECOLX] Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site.[HAMAP-Rule:MF_00537] [T6N332_ECOLX] Binds directly to 16S ribosomal RNA.[HAMAP-Rule:MF_00500] [A0A069XYI1_ECOLX] One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex.[HAMAP-Rule:MF_00100][RuleBase:RU000644][SAAS:SAAS00362971] [D7X302_ECOLX] Involved in the binding of tRNA to the ribosomes.[HAMAP-Rule:MF_00508] [D7ZET0_ECOLX] This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.[HAMAP-Rule:MF_01366][RuleBase:RU003878][SAAS:SAAS00672061] [RS11_ECOLI] Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine-Dalgarno cleft in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01310] [A0A0G3K7Z5_ECOLX] One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit.[HAMAP-Rule:MF_01326] [A0A1X3KX08_ECOLX] Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites.[HAMAP-Rule:MF_01315] [L2VF14_ECOLX] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365][RuleBase:RU003870] [S1CG62_ECOLX] Binds together with S18 to 16S ribosomal RNA.[HAMAP-Rule:MF_00360][SAAS:SAAS00348112] [RL3_ECOLI] One of two assembly inititator proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit.[HAMAP-Rule:MF_01325_B] [D7ZEN7_ECOLX] This protein binds to 23S rRNA in the presence of protein L20.[RuleBase:RU000562][SAAS:SAAS00637547] [A0A376HTV6_ECOLX] Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation.[HAMAP-Rule:MF_01309] [I0VVN8_ECOLX] This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance.[HAMAP-Rule:MF_01337] [A0A0A8UEU4_ECOLX] One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome.[HAMAP-Rule:MF_01369] [V6FZ95_ECOLX] Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.[HAMAP-Rule:MF_00403][RuleBase:RU003623] With S4 and S5 plays an important role in translational accuracy.[HAMAP-Rule:MF_00403][RuleBase:RU003623] [D7XN21_ECOLX] Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome.[HAMAP-Rule:MF_01343] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA.[HAMAP-Rule:MF_01343][RuleBase:RU004524] [D8A1L7_ECOMS] One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit.[HAMAP-Rule:MF_01302] [S1EK76_ECOLX] Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit.[HAMAP-Rule:MF_00382][RuleBase:RU000560] [L3PZ69_ECOLX] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.[HAMAP-Rule:MF_01306] With S5 and S12 plays an important role in translational accuracy.[HAMAP-Rule:MF_01306] [RL16_ECOLI] This protein binds directly to 23S ribosomal RNA and is located at the A site of the peptidyltransferase center. It contacts the A and P site tRNAs. It has an essential role in subunit assembly, which is not well understood.[HAMAP-Rule:MF_01342] [J7R4G2_ECOLX] This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site.[HAMAP-Rule:MF_00402][RuleBase:RU000559] [D7XH79_ECOLX] This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance.[HAMAP-Rule:MF_01336][SAAS:SAAS00629804] [F4SQ43_ECOLX] Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA.[HAMAP-Rule:MF_00531] [B6I217_ECOSE] Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body.[HAMAP-Rule:MF_01307][SAAS:SAAS00085417] With S4 and S12 plays an important role in translational accuracy.[HAMAP-Rule:MF_01307][SAAS:SAAS00085429]

Publication Abstract from PubMed

Bacterial translation initiation entails the tightly regulated joining of the 50S ribosomal subunit to an initiator transfer RNA (fMet-tRNA(fMet))-containing 30S ribosomal initiation complex (IC) to form a 70S IC that subsequently matures into a 70S elongation-competent complex (70S EC). Rapid and accurate 70S IC formation is promoted by 30S IC-bound initiation factors (IFs), which must dissociate before the resulting 70S EC can begin translation elongation(1). Although comparison of 30S(2-5) and 70S(4,6-8) IC structures have revealed that the ribosome, IFs, and fMet-tRNA(fMet) can acquire different conformations in these complexes, the timing of conformational changes during 70S IC formation, structures of any intermediates formed during these rearrangements, and contributions that these dynamics might make to the mechanism and regulation of initiation remain unknown. Moreover, the absence of a 70S EC structure obtained directly from a 70S IC formed via an IF-catalysed initiation reaction has precluded an understanding of ribosome, IF, and fMet-tRNA(fMet) rearrangements that occur upon maturation of a 70S IC into a 70S EC. Using time-resolved cryogenic electron microscopy (TR cryo-EM)(9), we report the first, near-atomic-resolution view of how a time-ordered series of conformational changes drive and regulate subunit joining, IF dissociation, and fMet-tRNA(fMet) positioning during 70S EC formation. Our results demonstrate the power of TR cryo-EM to determine how a time-ordered series of conformational changes contribute to the mechanism and regulation of one of the most fundamental processes in biology.

Late steps in bacterial translation initiation visualized using time-resolved cryo-EM.,Kaledhonkar S, Fu Z, Caban K, Li W, Chen B, Sun M, Gonzalez RL Jr, Frank J Nature. 2019 May 20. pii: 10.1038/s41586-019-1249-5. doi:, 10.1038/s41586-019-1249-5. PMID:31108498[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Kaledhonkar S, Fu Z, Caban K, Li W, Chen B, Sun M, Gonzalez RL Jr, Frank J. Late steps in bacterial translation initiation visualized using time-resolved cryo-EM. Nature. 2019 May 20. pii: 10.1038/s41586-019-1249-5. doi:, 10.1038/s41586-019-1249-5. PMID:31108498 doi:http://dx.doi.org/10.1038/s41586-019-1249-5

Contents


Downloading... [718846/2196687]

6o9k, resolution 4.00Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools