6p5n

From Proteopedia

Jump to: navigation, search

Structure of a mammalian 80S ribosome in complex with a single translocated Israeli Acute Paralysis Virus IRES and eRF1

Structural highlights

6p5n is a 10 chain structure with sequence from Israeli acute paralysis virus and Oryctolagus cuniculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.2Å
Experimental data:Check to display Experimental Data
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RL8_RABIT Component of the large ribosomal subunit (PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857).[1] [2] [3] [4]

Publication Abstract from PubMed

Colony collapse disorder (CCD) is a multi-faceted syndrome decimating bee populations worldwide, and a group of viruses of the widely distributed Dicistroviridae family have been identified as a causing agent of CCD. This family of viruses employs non-coding RNA sequences, called internal ribosomal entry sites (IRESs), to precisely exploit the host machinery for viral protein production. Using single-particle cryo-electron microscopy (cryo-EM), we have characterized how the IRES of Israeli acute paralysis virus (IAPV) intergenic region captures and redirects translating ribosomes toward viral RNA messages. We reconstituted two in vitro reactions targeting a pre-translocation and a post-translocation state of the IAPV-IRES in the ribosome, allowing us to identify six structures using image processing classification methods. From these, we reconstructed the trajectory of IAPV-IRES from the early small subunit recruitment to the final post-translocated state in the ribosome. An early commitment of IRES/ribosome complexes for global pre-translocation mimicry explains the high efficiency observed for this IRES. Efforts directed toward fighting CCD by targeting the IAPV-IRES using RNA-interference technology are underway, and the structural framework presented here may assist in further refining these approaches.

The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs.,Acosta-Reyes F, Neupane R, Frank J, Fernandez IS EMBO J. 2019 Oct 14:e102226. doi: 10.15252/embj.2019102226. PMID:31609474[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Muhs M, Hilal T, Mielke T, Skabkin MA, Sanbonmatsu KY, Pestova TV, Spahn CM. Cryo-EM of Ribosomal 80S Complexes with Termination Factors Reveals the Translocated Cricket Paralysis Virus IRES. Mol Cell. 2015 Feb 5;57(3):422-432. doi: 10.1016/j.molcel.2014.12.016. Epub 2015 , Jan 15. PMID:25601755 doi:http://dx.doi.org/10.1016/j.molcel.2014.12.016
  2. Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5. PMID:26245381 doi:http://dx.doi.org/10.1038/nature14896
  3. Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell. 2016 Nov 17;167(5):1229-1240.e15. doi: 10.1016/j.cell.2016.10.046. PMID:27863242 doi:http://dx.doi.org/10.1016/j.cell.2016.10.046
  4. Flis J, Holm M, Rundlet EJ, Loerke J, Hilal T, Dabrowski M, Burger J, Mielke T, Blanchard SC, Spahn CMT, Budkevich TV. tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis. Cell Rep. 2018 Dec 4;25(10):2676-2688.e7. doi: 10.1016/j.celrep.2018.11.040. PMID:30517857 doi:http://dx.doi.org/10.1016/j.celrep.2018.11.040
  5. Acosta-Reyes F, Neupane R, Frank J, Fernandez IS. The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. EMBO J. 2019 Oct 14:e102226. doi: 10.15252/embj.2019102226. PMID:31609474 doi:http://dx.doi.org/10.15252/embj.2019102226

Contents


6p5n, resolution 3.20Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools