6peg
From Proteopedia
MIF with a allosteric inhibitor
Structural highlights
DiseaseMIF_HUMAN Genetic variations in MIF are associated with susceptibility to rheumatoid arthritis systemic juvenile (RASJ) [MIM:604302. An inflammatory articular disorder with systemic-onset beginning before the age of 16. It represents a subgroup of juvenile arthritis associated with severe extraarticular features and occasionally fatal complications. During active phases of the disorder, patients display a typical daily spiking fever, an evanescent macular rash, lymphadenopathy, hepatosplenomegaly, serositis, myalgia and arthritis. FunctionMIF_HUMAN Pro-inflammatory cytokine. Involved in the innate immune response to bacterial pathogens. The expression of MIF at sites of inflammation suggests a role as mediator in regulating the function of macrophages in host defense. Counteracts the anti-inflammatory activity of glucocorticoids. Has phenylpyruvate tautomerase and dopachrome tautomerase activity (in vitro), but the physiological substrate is not known. It is not clear whether the tautomerase activity has any physiological relevance, and whether it is important for cytokine activity.[1] [2] Publication Abstract from PubMedHuman Macrophage Migration Inhibitory Factor (MIF) is a trimeric cytokine implicated in a number of inflammatory and autoimmune diseases and cancer. We previously reported that the dye p425 (Chicago Sky Blue), which bound MIF at the interface of two MIF trimers covering the tautomerase and allosteric pockets, revealed a unique strategy to block MIF's pro-inflammatory activities. Structural liabilities, including the large size, precluded p425 as a medicinal chemistry lead for drug development. We report here a rational design strategy linking only the fragment of p425 that binds over the tautomerase pocket to the core of ibudilast, a known MIF allosteric site-specific inhibitor. The chimeric compound, termed L2-4048, was shown by X-ray crystallography to bind at the allosteric and tautomerase sites as anticipated. L2-4048 retained target binding and blocked MIF's tautomerase CD74 receptor binding, and pro-inflammatory activities. Our studies lay the foundation for the design and synthesis of smaller and more drug-like compounds that retain the MIF inhibitory properties of this chimera. Inhibition of Macrophage Migration Inhibitory Factor by a Chimera of Two Allosteric Binders.,Cirillo PF, Asojo OA, Khire U, Lee Y, Mootien S, Hegan P, Sutherland AG, Peterson-Roth E, Ledizet M, Koski RA, Anthony KG ACS Med Chem Lett. 2019 Nov 19;11(10):1843-1847. doi:, 10.1021/acsmedchemlett.9b00351. eCollection 2020 Oct 8. PMID:33062162[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations 1 reviews cite this structure No citations found See AlsoReferences
|
|