6qtz

From Proteopedia

Jump to: navigation, search

Cryo-EM structures of Lsg1-TAP pre-60S ribosomal particles

Structural highlights

6qtz is a 48 chain structure with sequence from Saccharomyces cerevisiae and Saccharomyces cerevisiae . Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:ZN
Experimental data:Check to display Experimental Data
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[REH1_YEAST] Pre-60S-associated cytoplasmic factor involved in the cytoplasmic maturation of the 60S subunit. May act redundantly with REI1 to directly promote a stabilizing structural rearrangement in cytoplasmic 60S subunit maturation independent on the REI1-specific ARX1 recycling.[1] [RL25_YEAST] This protein binds to a specific region on the 26S rRNA. [RL40A_YEAST] Ubiquitin: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, and DNA-damage responses. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling (By similarity). 60S ribosomal protein L40-A: Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (PubMed:22096102). eL40 is essential for translation of a subset of cellular transcripts, including stress response transcripts, such as DDR2 (PubMed:23169626).[2] [3] [IF6_YEAST] Binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit to form the 80S initiation complex in the cytoplasm. Is also involved in ribosome biogenesis. Associates with pre-60S subunits in the nucleus and is involved in its nuclear export. Cytoplasmic release of TIF6 from 60S subunits and nuclear relocalization is promoted by the GTPase RIA1/EFL1 and by SDO1. Also required for pre-rRNA processing.[4] [5] [6] [7] [8] [9] [RL16B_YEAST] Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel.[10] [NMD3_YEAST] Acts as an adapter for the XPO1/CRM1-mediated export of the 60S ribosomal subunit. Unlikely to play a significant role in nonsense-mediated mRNA decay (NMD).[11] [RL5_YEAST] Binds 5S RNA and is required for 60S subunit assembly. [RL4A_YEAST] Participates in the regulation of the accumulation of its own mRNA.[12] [RL37A_YEAST] Binds to the 23S rRNA (By similarity). [LSG1_YEAST] GTPase required for the nuclear export of the 60S ribosomal subunit. Acts by mediating the release of NMD3 from the 60S ribosomal subunit after export into the cytoplasm.[13] [14] [15] [16] [RL11A_YEAST] Binds to 5S ribosomal RNA.

Publication Abstract from PubMed

During their final maturation in the cytoplasm, pre-60S ribosomal particles are converted to translation-competent large ribosomal subunits. Here, we present the mechanism of peptidyltransferase centre (PTC) completion that explains how integration of the last ribosomal proteins is coupled to release of the nuclear export adaptor Nmd3. Single-particle cryo-EM reveals that eL40 recruitment stabilises helix 89 to form the uL16 binding site. The loading of uL16 unhooks helix 38 from Nmd3 to adopt its mature conformation. In turn, partial retraction of the L1 stalk is coupled to a conformational switch in Nmd3 that allows the uL16 P-site loop to fully accommodate into the PTC where it competes with Nmd3 for an overlapping binding site (base A2971). Our data reveal how the central functional site of the ribosome is sculpted and suggest how the formation of translation-competent 60S subunits is disrupted in leukaemia-associated ribosomopathies.

Mechanism of completion of peptidyltransferase centre assembly in eukaryotes.,Kargas V, Castro-Hartmann P, Escudero-Urquijo N, Dent K, Hilcenko C, Sailer C, Zisser G, Marques-Carvalho MJ, Pellegrino S, Wawiorka L, Freund SM, Wagstaff JL, Andreeva A, Faille A, Chen E, Stengel F, Bergler H, Warren AJ Elife. 2019 May 22;8. pii: 44904. doi: 10.7554/eLife.44904. PMID:31115337[17]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. Parnell KM, Bass BL. Functional redundancy of yeast proteins Reh1 and Rei1 in cytoplasmic 60S subunit maturation. Mol Cell Biol. 2009 Jul;29(14):4014-23. Epub 2009 May 11. PMID:19433447 doi:http://dx.doi.org/MCB.01582-08
  2. Lee AS, Burdeinick-Kerr R, Whelan SP. A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):324-9. doi: 10.1073/pnas.1216454109. , Epub 2012 Nov 19. PMID:23169626 doi:http://dx.doi.org/10.1073/pnas.1216454109
  3. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 2011 Dec 16;334(6062):1524-9. Epub 2011 Nov 17. PMID:22096102 doi:10.1126/science.1212642
  4. Sanvito F, Piatti S, Villa A, Bossi M, Lucchini G, Marchisio PC, Biffo S. The beta4 integrin interactor p27(BBP/eIF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly. J Cell Biol. 1999 Mar 8;144(5):823-37. PMID:10085284
  5. Senger B, Lafontaine DL, Graindorge JS, Gadal O, Camasses A, Sanni A, Garnier JM, Breitenbach M, Hurt E, Fasiolo F. The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis. Mol Cell. 2001 Dec;8(6):1363-73. PMID:11779510
  6. Basu U, Si K, Warner JR, Maitra U. The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol Cell Biol. 2001 Mar;21(5):1453-62. PMID:11238882 doi:10.1128/MCB.21.5.1453-1462.2001
  7. Menne TF, Goyenechea B, Sanchez-Puig N, Wong CC, Tonkin LM, Ancliff PJ, Brost RL, Costanzo M, Boone C, Warren AJ. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat Genet. 2007 Apr;39(4):486-95. Epub 2007 Mar 11. PMID:17353896 doi:ng1994
  8. Ray P, Basu U, Ray A, Majumdar R, Deng H, Maitra U. The Saccharomyces cerevisiae 60 S ribosome biogenesis factor Tif6p is regulated by Hrr25p-mediated phosphorylation. J Biol Chem. 2008 Apr 11;283(15):9681-91. doi: 10.1074/jbc.M710294200. Epub 2008 , Feb 5. PMID:18256024 doi:10.1074/jbc.M710294200
  9. Groft CM, Beckmann R, Sali A, Burley SK. Crystal structures of ribosome anti-association factor IF6. Nat Struct Biol. 2000 Dec;7(12):1156-64. PMID:11101899 doi:10.1038/82017
  10. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 2011 Dec 16;334(6062):1524-9. Epub 2011 Nov 17. PMID:22096102 doi:10.1126/science.1212642
  11. Ho JH, Kallstrom G, Johnson AW. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J Cell Biol. 2000 Nov 27;151(5):1057-66. PMID:11086007
  12. Presutti C, Ciafre SA, Bozzoni I. The ribosomal protein L2 in S. cerevisiae controls the level of accumulation of its own mRNA. EMBO J. 1991 Aug;10(8):2215-21. PMID:2065661
  13. Hedges J, West M, Johnson AW. Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. EMBO J. 2005 Feb 9;24(3):567-79. Epub 2005 Jan 20. PMID:15660131 doi:http://dx.doi.org/7600547
  14. West M, Hedges JB, Chen A, Johnson AW. Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Mol Cell Biol. 2005 May;25(9):3802-13. PMID:15831484 doi:http://dx.doi.org/25/9/3802
  15. Hedges J, Chen YI, West M, Bussiere C, Johnson AW. Mapping the functional domains of yeast NMD3, the nuclear export adapter for the 60 S ribosomal subunit. J Biol Chem. 2006 Dec 1;281(48):36579-87. Epub 2006 Oct 2. PMID:17015443 doi:http://dx.doi.org/M606798200
  16. Hofer A, Bussiere C, Johnson AW. Mutational analysis of the ribosomal protein Rpl10 from yeast. J Biol Chem. 2007 Nov 9;282(45):32630-9. Epub 2007 Aug 30. PMID:17761675 doi:http://dx.doi.org/10.1074/jbc.M705057200
  17. Kargas V, Castro-Hartmann P, Escudero-Urquijo N, Dent K, Hilcenko C, Sailer C, Zisser G, Marques-Carvalho MJ, Pellegrino S, Wawiorka L, Freund SM, Wagstaff JL, Andreeva A, Faille A, Chen E, Stengel F, Bergler H, Warren AJ. Mechanism of completion of peptidyltransferase centre assembly in eukaryotes. Elife. 2019 May 22;8. pii: 44904. doi: 10.7554/eLife.44904. PMID:31115337 doi:http://dx.doi.org/10.7554/eLife.44904

Contents


Creating or updating UnitsVisual [1/48]

6qtz, resolution 3.50Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools