6rzg

From Proteopedia

Jump to: navigation, search

Galectin-3C in complex with meta-fluoroaryltriazole galactopyranosyl 1-thio-D-glucopyranoside derivative

Structural highlights

6rzg is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.015Å
Ligands:CL, KOW
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LEG3_HUMAN Galactose-specific lectin which binds IgE. May mediate with the alpha-3, beta-1 integrin the stimulation by CSPG4 of endothelial cells migration. Together with DMBT1, required for terminal differentiation of columnar epithelial cells during early embryogenesis (By similarity). In the nucleus: acts as a pre-mRNA splicing factor. Involved in acute inflammatory responses including neutrophil activation and adhesion, chemoattraction of monocytes macrophages, opsonization of apoptotic neutrophils, and activation of mast cells.[1] [2] [3]

Publication Abstract from PubMed

Molecular recognition is fundamental to biological signaling. A central question is how individual interactions between molecular moieties affect the thermodynamics of ligand binding to proteins and how these effects might propagate beyond the immediate neighborhood of the binding site. Here, we investigate this question by introducing minor changes in ligand structure and characterizing the effects of these on ligand affinity to the carbohydrate recognition domain of galectin-3, using a combination of isothermal titration calorimetry, X-ray crystallography, NMR relaxation, and computational approaches including molecular dynamics (MD) simulations and grid inhomogeneous solvation theory (GIST). We studied a congeneric series of ligands with a fluorophenyl-triazole moiety, where the fluorine substituent varies between the ortho, meta, and para positions (denoted O, M, and P). The M and P ligands have similar affinities, whereas the O ligand has 3-fold lower affinity, reflecting differences in binding enthalpy and entropy. The results reveal surprising differences in conformational and solvation entropy among the three complexes. NMR backbone order parameters show that the O-bound protein has reduced conformational entropy compared to the M and P complexes. By contrast, the bound ligand is more flexible in the O complex, as determined by (19)F NMR relaxation, ensemble-refined X-ray diffraction data, and MD simulations. Furthermore, GIST calculations indicate that the O-bound complex has less unfavorable solvation entropy compared to the other two complexes. Thus, the results indicate compensatory effects from ligand conformational entropy and water entropy, on the one hand, and protein conformational entropy, on the other hand. Taken together, these different contributions amount to entropy-entropy compensation among the system components involved in ligand binding to a target protein.

Entropy-Entropy Compensation between the Protein, Ligand, and Solvent Degrees of Freedom Fine-Tunes Affinity in Ligand Binding to Galectin-3C.,Wallerstein J, Ekberg V, Ignjatovic MM, Kumar R, Caldararu O, Peterson K, Wernersson S, Brath U, Leffler H, Oksanen E, Logan DT, Nilsson UJ, Ryde U, Akke M JACS Au. 2021 Apr 1;1(4):484-500. doi: 10.1021/jacsau.0c00094. eCollection 2021, Apr 26. PMID:34467311[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell. 2004 Aug;15(8):3580-90. Epub 2004 Jun 4. PMID:15181153 doi:http://dx.doi.org/10.1091/mbc.E04-03-0236
  2. Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunol Rev. 2009 Jul;230(1):160-71. doi: 10.1111/j.1600-065X.2009.00794.x. PMID:19594635 doi:10.1111/j.1600-065X.2009.00794.x
  3. Haudek KC, Spronk KJ, Voss PG, Patterson RJ, Wang JL, Arnoys EJ. Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim Biophys Acta. 2010 Feb;1800(2):181-189. Epub 2009 Jul 16. PMID:19616076 doi:S0304-4165(09)00194-9
  4. Wallerstein J, Ekberg V, Ignjatovic MM, Kumar R, Caldararu O, Peterson K, Wernersson S, Brath U, Leffler H, Oksanen E, Logan DT, Nilsson UJ, Ryde U, Akke M. Entropy-Entropy Compensation between the Protein, Ligand, and Solvent Degrees of Freedom Fine-Tunes Affinity in Ligand Binding to Galectin-3C. JACS Au. 2021 Apr 1;1(4):484-500. doi: 10.1021/jacsau.0c00094. eCollection 2021, Apr 26. PMID:34467311 doi:http://dx.doi.org/10.1021/jacsau.0c00094

Contents


PDB ID 6rzg

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools