6vee

From Proteopedia

Jump to: navigation, search

Solution structure of the TTD and linker region of mouse UHRF1 (NP95)

Structural highlights

6vee is a 1 chain structure with sequence from Mus musculus. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

UHRF1_MOUSE Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. May be involved in DNA repair.[1] [2] [3] [4] [5] [6] [7] [8]

Publication Abstract from PubMed

UHRF1 is an important epigenetic regulator associated with apoptosis and tumour development. It is a multidomain protein that integrates readout of different histone modification states and DNA methylation with enzymatic histone ubiquitylation activity. Emerging evidence indicates that the chromatin-binding and enzymatic modules of UHRF1 do not act in isolation but interplay in a coordinated and regulated manner. Here, we compared two splicing variants (V1, V2) of murine UHRF1 (mUHRF1) with human UHRF1 (hUHRF1). We show that insertion of nine amino acids in a linker region connecting the different TTD and PHD histone modification-binding domains causes distinct H3K9me3-binding behaviour of mUHRF1 V1. Structural analysis suggests that in mUHRF1 V1, in contrast to V2 and hUHRF1, the linker is anchored in a surface groove of the TTD domain, resulting in creation of a coupled TTD-PHD module. This establishes multivalent, synergistic H3-tail binding causing distinct cellular localization and enhanced H3K9me3-nucleosome ubiquitylation activity. In contrast to hUHRF1, H3K9me3-binding of the murine proteins is not allosterically regulated by phosphatidylinositol 5-phosphate that interacts with a separate less-conserved polybasic linker region of the protein. Our results highlight the importance of flexible linkers in regulating multidomain chromatin binding proteins and point to divergent evolution of their regulation.

Alternative splicing and allosteric regulation modulate the chromatin binding of UHRF1.,Tauber M, Kreuz S, Lemak A, Mandal P, Yerkesh Z, Veluchamy A, Al-Gashgari B, Aljahani A, Cortes-Medina LV, Azhibek D, Fan L, Ong MS, Duan S, Houliston S, Arrowsmith CH, Fischle W Nucleic Acids Res. 2020 Aug 20;48(14):7728-7747. doi: 10.1093/nar/gkaa520. PMID:32609811[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Muto M, Kanari Y, Kubo E, Takabe T, Kurihara T, Fujimori A, Tatsumi K. Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. J Biol Chem. 2002 Sep 13;277(37):34549-55. Epub 2002 Jun 25. PMID:12084726 doi:http://dx.doi.org/10.1074/jbc.M205189200
  2. Bonapace IM, Latella L, Papait R, Nicassio F, Sacco A, Muto M, Crescenzi M, Di Fiore PP. Np95 is regulated by E1A during mitotic reactivation of terminally differentiated cells and is essential for S phase entry. J Cell Biol. 2002 Jun 10;157(6):909-14. Epub 2002 Jun 10. PMID:12058012 doi:http://dx.doi.org/10.1083/jcb.200201025
  3. Citterio E, Papait R, Nicassio F, Vecchi M, Gomiero P, Mantovani R, Di Fiore PP, Bonapace IM. Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol Cell Biol. 2004 Mar;24(6):2526-35. PMID:14993289
  4. Unoki M, Nishidate T, Nakamura Y. ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene. 2004 Oct 7;23(46):7601-10. PMID:15361834 doi:10.1038/sj.onc.1208053
  5. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007 Dec 6;450(7171):908-12. Epub 2007 Nov 11. PMID:17994007 doi:http://dx.doi.org/10.1038/nature06397
  6. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007 Sep 21;317(5845):1760-4. Epub 2007 Aug 2. PMID:17673620 doi:10.1126/science.1147939
  7. Nady N, Lemak A, Walker JR, Avvakumov GV, Kareta MS, Achour M, Xue S, Duan S, Allali-Hassani A, Zuo X, Wang YX, Bronner C, Chedin F, Arrowsmith CH, Dhe-Paganon S. Recognition of multivalent histone states associated with heterochromatin by UHRF1. J Biol Chem. 2011 Apr 13. PMID:21489993 doi:10.1074/jbc.M111.234104
  8. Qin W, Leonhardt H, Spada F. Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1. J Cell Biochem. 2011 Feb;112(2):439-44. doi: 10.1002/jcb.22998. PMID:21268065 doi:http://dx.doi.org/10.1002/jcb.22998
  9. Tauber M, Kreuz S, Lemak A, Mandal P, Yerkesh Z, Veluchamy A, Al-Gashgari B, Aljahani A, Cortes-Medina LV, Azhibek D, Fan L, Ong MS, Duan S, Houliston S, Arrowsmith CH, Fischle W. Alternative splicing and allosteric regulation modulate the chromatin binding of UHRF1. Nucleic Acids Res. 2020 Aug 20;48(14):7728-7747. doi: 10.1093/nar/gkaa520. PMID:32609811 doi:http://dx.doi.org/10.1093/nar/gkaa520

Contents


PDB ID 6vee

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools