6whc

From Proteopedia

Jump to: navigation, search

CryoEM Structure of the glucagon receptor with a dual-agonist peptide

Structural highlights

6whc is a 6 chain structure with sequence from Camelus glama and Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:GNAS, GNAS1, GSP (HUMAN), GNB1 (HUMAN), GNG2 (HUMAN), GCGR (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[GNAS2_HUMAN] Pseudopseudohypoparathyroidism;Pseudohypoparathyroidism type 1A;Progressive osseous heteroplasia;Polyostotic fibrous dysplasia;Monostotic fibrous dysplasia;Pseudohypoparathyroidism type 1C;Pseudohypoparathyroidism type 1B;McCune-Albright syndrome. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. Most affected individuals have defects in methylation of the gene. In some cases microdeletions involving the STX16 appear to cause loss of methylation at exon A/B of GNAS, resulting in PHP1B. Paternal uniparental isodisomy have also been observed. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry.

Function

[GLR_HUMAN] This is a receptor for glucagon which plays a central role in regulating the level of blood glucose by controlling the rate of hepatic glucose production and insulin secretion. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase and also a phosphatidylinositol-calcium second messenger system. [GNAS2_HUMAN] Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein-coupled receptors (GPCRs) (PubMed:17110384). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP (PubMed:26206488, PubMed:8702665). GNAS functions downstream of several GPCRs, including beta-adrenergic receptors (PubMed:21488135). Stimulates the Ras signaling pathway via RAPGEF2 (PubMed:12391161).[1] [2] [3] [4] [5] [GBG2_HUMAN] Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction (By similarity). [GBB1_HUMAN] Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction.[6]

Publication Abstract from PubMed

Unimolecular dual agonists of the glucagon (GCG) receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) are a new class of drugs that are potentially superior to GLP-1R-specific agonists for the management of metabolic disease. The dual-agonist, peptide 15 (P15), is a glutamic acid 16 analogue of GCG with GLP-1 peptide substitutions between amino acids 17 and 24 that has potency equivalent to those of the cognate peptide agonists at the GCGR and GLP-1R. Here, we have used cryo-EM to solve the structure of an active P15:GCGR:Gs complex and compared this structure to our recently published structure of the GCGR:Gs complex bound to GCG. This comparison revealed that P15 has a reduced interaction with the first extracellular loop (ECL1) and the top of transmembrane segment 1 (TM1) such that there is increased mobility of the GCGR extracellular domain and at the C-terminus of the peptide compared with the GCG-bound receptor. We also observed a distinct conformation of ECL3 and could infer increased mobility of the far N-terminal His-1 residue in the P15-bound structure. These regions of conformational variance in the two peptide-bound GCGR structures were also regions that were distinct between GCGR structures and previously published peptide-bound structures of the GLP-1R, suggesting that greater conformational dynamics may contribute to the increased efficacy of P15 in activation of the GLP-1R compared with GCG. The variable domains in this receptor have previously been implicated in biased agonism at the GLP-1R and could result in altered signaling of P15 at the GCGR compared with GCG.

Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide.,Chang R, Zhang X, Qiao A, Dai A, Belousoff MJ, Tan Q, Shao L, Zhong L, Lin G, Liang YL, Ma L, Han S, Yang D, Danev R, Wang MW, Wootten D, Wu B, Sexton PM J Biol Chem. 2020 May 5. pii: RA120.013793. doi: 10.1074/jbc.RA120.013793. PMID:32371397[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

References

  1. Pak Y, Pham N, Rotin D. Direct binding of the beta1 adrenergic receptor to the cyclic AMP-dependent guanine nucleotide exchange factor CNrasGEF leads to Ras activation. Mol Cell Biol. 2002 Nov;22(22):7942-52. PMID:12391161
  2. Gao X, Sadana R, Dessauer CW, Patel TB. Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits. J Biol Chem. 2007 Jan 5;282(1):294-302. Epub 2006 Nov 16. PMID:17110384 doi:http://dx.doi.org/10.1074/jbc.M607522200
  3. Thiele S, de Sanctis L, Werner R, Grotzinger J, Aydin C, Juppner H, Bastepe M, Hiort O. Functional characterization of GNAS mutations found in patients with pseudohypoparathyroidism type Ic defines a new subgroup of pseudohypoparathyroidism affecting selectively Gsalpha-receptor interaction. Hum Mutat. 2011 Jun;32(6):653-60. doi: 10.1002/humu.21489. Epub 2011 Apr 12. PMID:21488135 doi:http://dx.doi.org/10.1002/humu.21489
  4. Brand CS, Sadana R, Malik S, Smrcka AV, Dessauer CW. Adenylyl Cyclase 5 Regulation by Gbetagamma Involves Isoform-Specific Use of Multiple Interaction Sites. Mol Pharmacol. 2015 Oct;88(4):758-67. doi: 10.1124/mol.115.099556. Epub 2015 Jul , 23. PMID:26206488 doi:http://dx.doi.org/10.1124/mol.115.099556
  5. Farfel Z, Iiri T, Shapira H, Roitman A, Mouallem M, Bourne HR. Pseudohypoparathyroidism, a novel mutation in the betagamma-contact region of Gsalpha impairs receptor stimulation. J Biol Chem. 1996 Aug 16;271(33):19653-5. PMID:8702665
  6. Johnston CA, Kimple AJ, Giguere PM, Siderovski DP. Structure of the parathyroid hormone receptor C terminus bound to the G-protein dimer Gbeta1gamma2. Structure. 2008 Jul;16(7):1086-94. PMID:18611381 doi:http://dx.doi.org/10.1016/j.str.2008.04.010
  7. Chang R, Zhang X, Qiao A, Dai A, Belousoff MJ, Tan Q, Shao L, Zhong L, Lin G, Liang YL, Ma L, Han S, Yang D, Danev R, Wang MW, Wootten D, Wu B, Sexton PM. Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. J Biol Chem. 2020 May 5. pii: RA120.013793. doi: 10.1074/jbc.RA120.013793. PMID:32371397 doi:http://dx.doi.org/10.1074/jbc.RA120.013793

Contents


PDB ID 6whc

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools