6wlw

From Proteopedia

Jump to: navigation, search

The Vo region of human V-ATPase in state 1 (focused refinement)

Structural highlights

6wlw is a 16 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3Å
Ligands:BGC, BMA, CLR, GAL, GLC, MAN, NAG, NGA, PSF, PTY, SIA, WJP, WJS, WSS
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

VATO_HUMAN Proton-conducting pore forming subunit of the V0 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (PubMed:33065002). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity).[UniProtKB:Q2TA24][1]

Publication Abstract from PubMed

Vesicular- or vacuolar-type adenosine triphosphatases (V-ATPases) are ATP-driven proton pumps comprised of a cytoplasmic V1 complex for ATP hydrolysis and a membrane-embedded Vo complex for proton transfer. They play important roles in acidification of intracellular vesicles, organelles, and the extracellular milieu in eukaryotes. Here, we report cryoelectron microscopy structures of human V-ATPase in three rotational states at up to 2.9-A resolution. Aided by mass spectrometry, we build all known protein subunits with associated N-linked glycans and identify glycolipids and phospholipids in the Vo complex. We define ATP6AP1 as a structural hub for Vo complex assembly because it connects to multiple Vo subunits and phospholipids in the c-ring. The glycolipids and the glycosylated Vo subunits form a luminal glycan coat critical for V-ATPase folding, localization, and stability. This study identifies mechanisms of V-ATPase assembly and biogenesis that rely on the integrated roles of ATP6AP1, glycans, and lipids.

Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly.,Wang L, Wu D, Robinson CV, Wu H, Fu TM Mol Cell. 2020 Nov 5;80(3):501-511.e3. doi: 10.1016/j.molcel.2020.09.029. Epub, 2020 Oct 15. PMID:33065002[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Wang L, Wu D, Robinson CV, Wu H, Fu TM. Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly. Mol Cell. 2020 Nov 5;80(3):501-511.e3. PMID:33065002 doi:10.1016/j.molcel.2020.09.029
  2. Wang L, Wu D, Robinson CV, Wu H, Fu TM. Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly. Mol Cell. 2020 Nov 5;80(3):501-511.e3. PMID:33065002 doi:10.1016/j.molcel.2020.09.029

Contents


PDB ID 6wlw

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools