6wpw
From Proteopedia
GCGR-Gs signaling complex bound to a designed glucagon derivative
Structural highlights
DiseaseGNAS2_HUMAN Pseudopseudohypoparathyroidism;Pseudohypoparathyroidism type 1A;Progressive osseous heteroplasia;Polyostotic fibrous dysplasia;Monostotic fibrous dysplasia;Pseudohypoparathyroidism type 1C;Pseudohypoparathyroidism type 1B;McCune-Albright syndrome. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. Most affected individuals have defects in methylation of the gene. In some cases microdeletions involving the STX16 appear to cause loss of methylation at exon A/B of GNAS, resulting in PHP1B. Paternal uniparental isodisomy have also been observed. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. FunctionGNAS2_HUMAN Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein-coupled receptors (GPCRs) (PubMed:17110384). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP (PubMed:26206488, PubMed:8702665). GNAS functions downstream of several GPCRs, including beta-adrenergic receptors (PubMed:21488135). Stimulates the Ras signaling pathway via RAPGEF2 (PubMed:12391161).[1] [2] [3] [4] [5] Publication Abstract from PubMedFamily B heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) play important roles in carbohydrate metabolism. Recent structures of family B GPCR-G(s) protein complexes reveal a disruption in the alpha-helix of transmembrane segment 6 (TM6) not observed in family A GPCRs. To investigate the functional impact of this structural difference, we compared the structure and function of the glucagon receptor (GCGR; family B) with the beta(2) adrenergic receptor (beta(2)AR; family A). We determined the structure of the GCGR-G(s) complex by means of cryo-electron microscopy at 3.1-angstrom resolution. This structure shows the distinct break in TM6. Guanosine triphosphate (GTP) turnover, guanosine diphosphate release, GTP binding, and G protein dissociation studies revealed much slower rates for G protein activation by the GCGR compared with the beta(2)AR. Fluorescence and double electron-electron resonance studies suggest that this difference is due to the inability of agonist alone to induce a detectable outward movement of the cytoplasmic end of TM6. Structural insights into differences in G protein activation by family A and family B GPCRs.,Hilger D, Kumar KK, Hu H, Pedersen MF, O'Brien ES, Giehm L, Jennings C, Eskici G, Inoue A, Lerch M, Mathiesen JM, Skiniotis G, Kobilka BK Science. 2020 Jul 31;369(6503):eaba3373. doi: 10.1126/science.aba3373. PMID:32732395[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|