6wy7

From Proteopedia

Jump to: navigation, search

CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH Compound-41 A.K.A 7-[1-phenyl-3-({4-phenylbicyclo[2.2.2]octan-1-yl}amino)propyl]-3H-[1,2,3]triazolo[4,5-b]pyridin-5-amine

Structural highlights

6wy7 is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.089Å
Ligands:BMA, CA, CL, CSO, FUC, HEC, MAN, NAG, UFD
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

PERM_HUMAN Defects in MPO are the cause of myeloperoxidase deficiency (MPOD) [MIM:254600. A disorder characterized by decreased myeloperoxidase activity in neutrophils and monocytes that results in disseminated candidiasis.[1] [2] [3] [4] [5]

Function

PERM_HUMAN Part of the host defense system of polymorphonuclear leukocytes. It is responsible for microbicidal activity against a wide range of organisms. In the stimulated PMN, MPO catalyzes the production of hypohalous acids, primarily hypochlorous acid in physiologic situations, and other toxic intermediates that greatly enhance PMN microbicidal activity.

Publication Abstract from PubMed

Myeloperoxidase (MPO) is a heme peroxidase found in neutrophils, monocytes and macrophages that efficiently catalyzes the oxidation of endogenous chloride into hypochlorous acid for antimicrobial activity. Chronic MPO activation can lead to indiscriminate protein modification causing tissue damage, and has been associated with chronic inflammatory diseases, atherosclerosis, and acute cardiovascular events. Triazolopyrimidine 5 is a reversible MPO inhibitor; however it suffers from poor stability in acid, and is an irreversible inhibitor of the DNA repair protein methyl guanine methyl transferase (MGMT). Structure-based drug design was employed to discover benzyl triazolopyridines with improved MPO potency, as well as acid stability, no reactivity with MGMT, and selectivity against thyroid peroxidase (TPO). Structure-activity relationships, a crystal structure of the MPO-inhibitor complex, and acute in vivo pharmacodynamic data are described herein.

Discovery and structure activity relationships of 7-benzyl triazolopyridines as stable, selective, and reversible inhibitors of myeloperoxidase.,Shaw SA, Vokits BP, Dilger AK, Viet A, Clark CG, Abell LM, Locke GA, Duke G, Kopcho LM, Dongre A, Gao J, Krishnakumar A, Jusuf S, Khan J, Spronk SA, Basso MD, Zhao L, Cantor GH, Onorato JM, Wexler RR, Duclos F, Kick EK Bioorg Med Chem. 2020 Sep 1;28(22):115723. doi: 10.1016/j.bmc.2020.115723. PMID:33007547[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Kizaki M, Miller CW, Selsted ME, Koeffler HP. Myeloperoxidase (MPO) gene mutation in hereditary MPO deficiency. Blood. 1994 Apr 1;83(7):1935-40. PMID:8142659
  2. Nauseef WM, Brigham S, Cogley M. Hereditary myeloperoxidase deficiency due to a missense mutation of arginine 569 to tryptophan. J Biol Chem. 1994 Jan 14;269(2):1212-6. PMID:7904599
  3. Nauseef WM, Cogley M, McCormick S. Effect of the R569W missense mutation on the biosynthesis of myeloperoxidase. J Biol Chem. 1996 Apr 19;271(16):9546-9. PMID:8621627
  4. DeLeo FR, Goedken M, McCormick SJ, Nauseef WM. A novel form of hereditary myeloperoxidase deficiency linked to endoplasmic reticulum/proteasome degradation. J Clin Invest. 1998 Jun 15;101(12):2900-9. PMID:9637725 doi:10.1172/JCI2649
  5. Romano M, Dri P, Dadalt L, Patriarca P, Baralle FE. Biochemical and molecular characterization of hereditary myeloperoxidase deficiency. Blood. 1997 Nov 15;90(10):4126-34. PMID:9354683
  6. Shaw SA, Vokits BP, Dilger AK, Viet A, Clark CG, Abell LM, Locke GA, Duke G, Kopcho LM, Dongre A, Gao J, Krishnakumar A, Jusuf S, Khan J, Spronk SA, Basso MD, Zhao L, Cantor GH, Onorato JM, Wexler RR, Duclos F, Kick EK. Discovery and structure activity relationships of 7-benzyl triazolopyridines as stable, selective, and reversible inhibitors of myeloperoxidase. Bioorg Med Chem. 2020 Nov 15;28(22):115723. PMID:33007547 doi:10.1016/j.bmc.2020.115723

Contents


PDB ID 6wy7

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools