7auc

From Proteopedia

Jump to: navigation, search

Crystal structure of an engineered helicase domain construct for human Bloom syndrome protein (BLM)

Structural highlights

7auc is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.53Å
Ligands:ACT, ADP, CA, EDO, GOL, MG, PG4, ZN
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

BLM_HUMAN Bloom syndrome. The disease is caused by mutations affecting the gene represented in this entry.

Function

BLM_HUMAN Participates in DNA replication and repair. Exhibits a magnesium-dependent ATP-dependent DNA-helicase activity that unwinds single- and double-stranded DNA in a 3'-5' direction. Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA. Negatively regulates sister chromatid exchange (SCE).[1] [2] [3] [4]

Publication Abstract from PubMed

BLM (Bloom syndrome protein) is a RECQ-family helicase involved in the dissolution of complex DNA structures and repair intermediates. Synthetic lethality analysis implicates BLM as a promising target in a range of cancers with defects in the DNA damage response; however, selective small molecule inhibitors of defined mechanism are currently lacking. Here, we identify and characterise a specific inhibitor of BLM's ATPase-coupled DNA helicase activity, by allosteric trapping of a DNA-bound translocation intermediate. Crystallographic structures of BLM-DNA-ADP-inhibitor complexes identify a hitherto unknown interdomain interface, whose opening and closing are integral to translocation of ssDNA, and which provides a highly selective pocket for drug discovery. Comparison with structures of other RECQ helicases provides a model for branch migration of Holliday junctions by BLM.

Uncovering an allosteric mode of action for a selective inhibitor of human Bloom syndrome protein.,Chen X, Ali YI, Fisher CE, Arribas-Bosacoma R, Rajasekaran MB, Williams G, Walker S, Booth JR, Hudson JJ, Roe SM, Pearl LH, Ward SE, Pearl FM, Oliver AW Elife. 2021 Mar 1;10. pii: 65339. doi: 10.7554/eLife.65339. PMID:33647232[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. Karow JK, Chakraverty RK, Hickson ID. The Bloom's syndrome gene product is a 3'-5' DNA helicase. J Biol Chem. 1997 Dec 5;272(49):30611-4. PMID:9388193
  2. Langland G, Elliott J, Li Y, Creaney J, Dixon K, Groden J. The BLM helicase is necessary for normal DNA double-strand break repair. Cancer Res. 2002 May 15;62(10):2766-70. PMID:12019152
  3. Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, Wyman C, Modrich P, Kowalczykowski SC. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 2011 Feb 15;25(4):350-62. doi: 10.1101/gad.2003811. PMID:21325134 doi:http://dx.doi.org/10.1101/gad.2003811
  4. Wan L, Han J, Liu T, Dong S, Xie F, Chen H, Huang J. Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair. Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10646-51. doi:, 10.1073/pnas.1220921110. Epub 2013 Mar 18. PMID:23509288 doi:http://dx.doi.org/10.1073/pnas.1220921110
  5. Chen X, Ali YI, Fisher CE, Arribas-Bosacoma R, Rajasekaran MB, Williams G, Walker S, Booth JR, Hudson JJ, Roe SM, Pearl LH, Ward SE, Pearl FM, Oliver AW. Uncovering an allosteric mode of action for a selective inhibitor of human Bloom syndrome protein. Elife. 2021 Mar 1;10. pii: 65339. doi: 10.7554/eLife.65339. PMID:33647232 doi:http://dx.doi.org/10.7554/eLife.65339

Contents


PDB ID 7auc

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools