7b7a

From Proteopedia

Jump to: navigation, search

ENDO-POLYGALACTURONASE FROM ARABIDOPSIS THALIANA

Structural highlights

7b7a is a 1 chain structure with sequence from Arabidopsis thaliana. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.3Å
Ligands:BMA, MAN, NAG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q9LYJ5_ARATH

Publication Abstract from PubMed

Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of </=4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.

Plant polygalacturonase structures specify enzyme dynamics and processivities to fine-tune cell wall pectins.,Safran J, Tabi W, Ung V, Lemaire A, Habrylo O, Bouckaert J, Rouffle M, Voxeur A, Pongrac P, Bassard S, Molinie R, Fontaine JX, Pilard S, Pau-Roblot C, Bonnin E, Larsen DS, Morel-Rouhier M, Girardet JM, Lefebvre V, Senechal F, Mercadante D, Pelloux J Plant Cell. 2023 Aug 2;35(8):3073-3091. doi: 10.1093/plcell/koad134. PMID:37202370[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

References

  1. Safran J, Tabi W, Ung V, Lemaire A, Habrylo O, Bouckaert J, Rouffle M, Voxeur A, Pongrac P, Bassard S, Molinié R, Fontaine JX, Pilard S, Pau-Roblot C, Bonnin E, Larsen DS, Morel-Rouhier M, Girardet JM, Lefebvre V, Sénéchal F, Mercadante D, Pelloux J. Plant polygalacturonase structures specify enzyme dynamics and processivities to fine-tune cell wall pectins. Plant Cell. 2023 Aug 2;35(8):3073-3091. PMID:37202370 doi:10.1093/plcell/koad134

Contents


PDB ID 7b7a

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools