7bf2
From Proteopedia
Ca2+-Calmodulin in complex with human muscle form creatine kinase peptide in extended 1:2 binding mode
Structural highlights
DiseaseCALM1_HUMAN The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14. FunctionCALM1_HUMAN Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).[1] [2] [3] [4] Publication Abstract from PubMedCalmodulin (CaM) is a ubiquitous Ca(2+) sensing protein that binds to and modulates numerous target proteins and enzymes during cellular signaling processes. A large number of CaM-target complexes have been identified and structurally characterized, revealing a wide diversity of CaM-binding modes. A newly identified target is creatine kinase (CK), a central enzyme in cellular energy homeostasis. This study reports two high-resolution X-ray structures, determined to 1.24 âA and 1.43 âA resolution, of calmodulin in complex with peptides from human brain and muscle CK, respectively. Both complexes adopt a rare extended binding mode with an observed stoichiometry of 1:2 CaM:peptide, confirmed by isothermal titration calorimetry, suggesting that each CaM domain independently binds one CK peptide in a Ca(2+)-depended manner. While the overall binding mode is similar between the structures with muscle or brain-type CK peptides, the most significant difference is the opposite binding orientation of the peptides in the N-terminal domain. This may extrapolate into distinct binding modes and regulation of the full-length CK isoforms. The structural insights gained in this study strengthen the link between cellular energy homeostasis and Ca(2+)-mediated cell signaling and may shed light on ways by which cells can 'fine tune' their energy levels to match the spatial and temporal demands. Calmodulin complexes with brain and muscle creatine kinase peptides.,Sprenger J, Trifan A, Patel N, Vanderbeck A, Bredfelt J, Tajkhorshid E, Rowlett R, Lo Leggio L, Akerfeldt KS, Linse S Curr Res Struct Biol. 2021 May 19;3:121-132. doi: 10.1016/j.crstbi.2021.05.001. , eCollection 2021. PMID:34235492[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|