7d4g

From Proteopedia

Jump to: navigation, search

A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2

Structural highlights

7d4g is a 3 chain structure with sequence from Homo sapiens and Severe acute respiratory syndrome coronavirus 2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.9Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Mutations and transient conformational movements of the receptor binding domain (RBD) that make neutralizing epitopes momentarily unavailable present immune escape routes for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To mitigate viral escape, we developed a cocktail of neutralizing antibodies (NAbs) targeting epitopes located on different domains of spike (S) protein. Screening of a library of monoclonal antibodies generated from peripheral blood mononuclear cells of COVID-19 convalescent patients yielded potent NAbs, targeting the N-terminal domain (NTD) and RBD domain of S, effective at nM concentrations. Remarkably, a combination of RBD-targeting NAbs and NTD-binding NAbs, FC05, enhanced the neutralization potency in cell-based assays and an animal model. Results of competitive surface plasmon resonance assays and cryo-electron microscopy (cryo-EM) structures of antigen-binding fragments bound to S unveil determinants of immunogenicity. Combinations of immunogens, identified in the NTD and RBD of S, when immunized in rabbits and macaques, elicited potent protective immune responses against SARS-CoV-2. More importantly, two immunizations of this combination of NTD and RBD immunogens provided complete protection in macaques against a SARS-CoV-2 challenge, without observable antibody-dependent enhancement of infection. These results provide a proof of concept for neutralization-based immunogen design targeting SARS-CoV-2 NTD and RBD.

A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2.,Zhang L, Cao L, Gao XS, Zheng BY, Deng YQ, Li JX, Feng R, Bian Q, Guo XL, Wang N, Qiu HY, Wang L, Cui Z, Ye Q, Chen G, Lu KK, Chen Y, Chen YT, Pan HX, Yu J, Yao W, Zhu BL, Chen J, Liu Y, Qin CF, Wang X, Zhu FC Natl Sci Rev. 2021 Mar 27;8(8):nwab053. doi: 10.1093/nsr/nwab053. eCollection , 2021 Aug. PMID:34676098[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Zhang L, Cao L, Gao XS, Zheng BY, Deng YQ, Li JX, Feng R, Bian Q, Guo XL, Wang N, Qiu HY, Wang L, Cui Z, Ye Q, Chen G, Lu KK, Chen Y, Chen YT, Pan HX, Yu J, Yao W, Zhu BL, Chen J, Liu Y, Qin CF, Wang X, Zhu FC. A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2. Natl Sci Rev. 2021 Mar 27;8(8):nwab053. PMID:34676098 doi:10.1093/nsr/nwab053

Contents


PDB ID 7d4g

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools