7d7e

From Proteopedia

Jump to: navigation, search

Structure of PKD1L3-CTD/PKD2L1 in apo state

Structural highlights

7d7e is a 4 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.4Å
Ligands:CA, NAG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PK2L1_MOUSE Pore-forming subunit of a ciliary calcium channel that controls calcium concentration within primary cilia without affecting cytoplasmic calcium concentration. Forms a heterodimer with PKD1L1 in primary cilia and forms a calcium-permeant ciliary channel that regulates sonic hedgehog/SHH signaling and GLI2 transcription. May act as a sour taste receptor by forming a calcium channel with PKD1L3 in gustatory cells; however, its contribution to sour taste perception is unclear in vivo and may be indirect. May play a role in the perception of carbonation taste.[1] [2] [3] [4] [5] [6] [7] [8]

Publication Abstract from PubMed

The heteromeric complex between PKD1L3, a member of the polycystic kidney disease (PKD) protein family, and PKD2L1, also known as TRPP2 or TRPP3, has been a prototype for mechanistic characterization of heterotetrametric TRP-like channels. Here we show that a truncated PKD1L3/PKD2L1 complex with the C-terminal TRP-fold fragment of PKD1L3 retains both Ca(2+) and acid-induced channel activities. Cryo-EM structures of this core heterocomplex with or without supplemented Ca(2+) were determined at resolutions of 3.1 A and 3.4 A, respectively. The heterotetramer, with a pseudo-symmetric TRP architecture of 1:3 stoichiometry, has an asymmetric selectivity filter (SF) guarded by Lys2069 from PKD1L3 and Asp523 from the three PKD2L1 subunits. Ca(2+)-entrance to the SF vestibule is accompanied by a swing motion of Lys2069 on PKD1L3. The S6 of PKD1L3 is pushed inward by the S4-S5 linker of the nearby PKD2L1 (PKD2L1-III), resulting in an elongated intracellular gate which seals the pore domain. Comparison of the apo and Ca(2+)-loaded complexes unveils an unprecedented Ca(2+) binding site in the extracellular cleft of the voltage-sensing domain (VSD) of PKD2L1-III, but not the other three VSDs. Structure-guided mutagenic studies support this unconventional site to be responsible for Ca(2+)-induced channel activation through an allosteric mechanism.

Structural basis for Ca(2+) activation of the heteromeric PKD1L3/PKD2L1 channel.,Su Q, Chen M, Wang Y, Li B, Jing D, Zhan X, Yu Y, Shi Y Nat Commun. 2021 Aug 11;12(1):4871. doi: 10.1038/s41467-021-25216-z. PMID:34381056[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Murakami M, Ohba T, Xu F, Shida S, Satoh E, Ono K, Miyoshi I, Watanabe H, Ito H, Iijima T. Genomic organization and functional analysis of murine PKD2L1. J Biol Chem. 2005 Feb 18;280(7):5626-35. doi: 10.1074/jbc.M411496200. Epub 2004, Nov 17. PMID:15548533 doi:http://dx.doi.org/10.1074/jbc.M411496200
  2. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12569-74. doi:, 10.1073/pnas.0602702103. Epub 2006 Aug 4. PMID:16891422 doi:http://dx.doi.org/10.1073/pnas.0602702103
  3. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJ, Zuker CS. The cells and logic for mammalian sour taste detection. Nature. 2006 Aug 24;442(7105):934-8. doi: 10.1038/nature05084. PMID:16929298 doi:http://dx.doi.org/10.1038/nature05084
  4. Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJ, Zuker CS. The taste of carbonation. Science. 2009 Oct 16;326(5951):443-5. doi: 10.1126/science.1174601. PMID:19833970 doi:http://dx.doi.org/10.1126/science.1174601
  5. Chang RB, Waters H, Liman ER. A proton current drives action potentials in genetically identified sour taste cells. Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22320-5. doi:, 10.1073/pnas.1013664107. Epub 2010 Nov 23. PMID:21098668 doi:http://dx.doi.org/10.1073/pnas.1013664107
  6. Horio N, Yoshida R, Yasumatsu K, Yanagawa Y, Ishimaru Y, Matsunami H, Ninomiya Y. Sour taste responses in mice lacking PKD channels. PLoS One. 2011;6(5):e20007. doi: 10.1371/journal.pone.0020007. Epub 2011 May 19. PMID:21625513 doi:http://dx.doi.org/10.1371/journal.pone.0020007
  7. Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE. Primary cilia are specialized calcium signalling organelles. Nature. 2013 Dec 12;504(7479):311-4. doi: 10.1038/nature12833. PMID:24336288 doi:http://dx.doi.org/10.1038/nature12833
  8. DeCaen PG, Delling M, Vien TN, Clapham DE. Direct recording and molecular identification of the calcium channel of primary cilia. Nature. 2013 Dec 12;504(7479):315-8. doi: 10.1038/nature12832. PMID:24336289 doi:http://dx.doi.org/10.1038/nature12832
  9. Su Q, Chen M, Wang Y, Li B, Jing D, Zhan X, Yu Y, Shi Y. Structural basis for Ca(2+) activation of the heteromeric PKD1L3/PKD2L1 channel. Nat Commun. 2021 Aug 11;12(1):4871. PMID:34381056 doi:10.1038/s41467-021-25216-z

Contents


PDB ID 7d7e

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools