7dnh
From Proteopedia
2-fold subparticles refinement of human papillomavirus type 58 pseudovirus in complexed with the Fab fragment of 2H3
Structural highlights
FunctionVL1_HPV58 Forms an icosahedral capsid with a T=7 symmetry and a 50 nm diameter. The capsid is composed of 72 pentamers linked to each other by disulfide bonds and associated with L2 proteins. Binds to heparan sulfate proteoglycans on cell surface of basal layer keratinocytes to provide initial virion attachment. This binding mediates a conformational change in the virus capsid that facilitates efficient infection. The virion enters the host cell via endocytosis. During virus trafficking, L1 protein dissociates from the viral DNA and the genomic DNA is released to the host nucleus. The virion assembly takes place within the cell nucleus. Encapsulates the genomic DNA together with protein L2.[HAMAP-Rule:MF_04002][1] Publication Abstract from PubMedHuman papillomavirus type 58 (HPV58) is associated with cervical cancer and poses a significant health burden worldwide. Although the commercial 9-valent HPV vaccine covers HPV58, the structural and molecular-level neutralization sites of the HPV58 complete virion are not fully understood. Here, we report the high-resolution ( approximately 3.5 A) structure of the complete HPV58 pseudovirus (PsV58) using cryo-electron microscopy (cryo-EM). Three representative neutralizing monoclonal antibodies (nAbs 5G9, 2H3 and A4B4) were selected through clustering from a nAb panel against HPV58. Bypassing the steric hindrance and symmetry-mismatch in the HPV Fab-capsid immune-complex, we present three different neutralizing epitopes in the PsV58, and show that, despite differences in binding, these nAbs share a common neutralization mechanism. These results offer insight into HPV58 genotype specificity and broaden our understanding of HPV58 neutralization sites for antiviral research.IMPORTANCE Cervical cancer primarily results from persistent infection with high-risk types of human papillomavirus (HPV). HPV type 58 (HPV58) is an important causative agent, especially within Asia. Despite this, we still have limited data pertaining to the structural and neutralizing epitopes of HPV58, and this encumbers our in-depth understanding of the virus mode of infection. Here, we show that representative nAbs (5G9, 10B11, 2H3, 5H2 and A4B4) from three different groups share a common neutralization mechanism that appears to prohibit the virus from associating with the extracellular matrix and cell surface. Furthermore, we identify that the nAbs engage via three different binding patterns: top-center binding (5G9 and 10B11), top-fringe binding (2H3 and 5H2), and fringe binding (A4B4). Our work shows that, despite differences in the pattern in binding, nAbs against HPV58 share a common neutralization mechanism. These results provide new insight into the understanding of HPV58 infection. Structural basis for the shared neutralization mechanism of three classes of human papillomavirus type 58 antibodies with disparate modes of binding.,He M, Chi X, Zha Z, Li Y, Chen J, Huang Y, Huang S, Yu M, Wang Z, Song S, Liu X, Wei S, Li Z, Li T, Wang Y, Yu H, Zhao Q, Zhang J, Zheng Q, Gu Y, Li S, Xia N J Virol. 2021 Mar 10;95(7):e01587-20. doi: 10.1128/JVI.01587-20. Epub 2021 Jan , 20. PMID:33472937[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Human papillomavirus 58 | Large Structures | Mus musculus | Chi X | Gu Y | He MZ | Li SW | Xia NS | Zha ZH | Zheng QB