7e59
From Proteopedia
interferon-inducible anti-viral protein truncated
Structural highlights
FunctionGBP5_HUMAN Interferon (IFN)-inducible GTPase that plays important roles in innate immunity against a diverse range of bacterial, viral and protozoan pathogens (By similarity). Hydrolyzes GTP, but in contrast to other family members, does not produce GMP (PubMed:20180847). Following infection, recruited to the pathogen-containing vacuoles or vacuole-escaped bacteria and acts as a positive regulator of inflammasome assembly by promoting the release of inflammasome ligands from bacteria (By similarity). Acts by promoting lysis of pathogen-containing vacuoles, releasing pathogens into the cytosol (By similarity). Following pathogen release in the cytosol, promotes recruitment of proteins that mediate bacterial cytolysis: this liberates ligands that are detected by inflammasomes, such as lipopolysaccharide (LPS) that activates the non-canonical CASP4/CASP11 inflammasome or double-stranded DNA (dsDNA) that activates the AIM2 inflammasome (By similarity). As an activator of NLRP3 inflammasome assembly: promotes selective NLRP3 inflammasome assembly in response to microbial and soluble, but not crystalline, agents (PubMed:22461501). Independently of its GTPase activity, acts as an inhibitor of various viruses infectivity, such as HIV-1, Zika and influenza A viruses, by inhibiting FURIN-mediated maturation of viral envelope proteins (PubMed:26996307, PubMed:31091448).[UniProtKB:Q8CFB4][1] [2] [3] [4] Antigenic tumor-specific truncated splice form.[5] Publication Abstract from PubMedGuanylate-binding proteins (GBPs) form a family of dynamin-related large GTPases which mediate important innate immune functions. They were proposed to form oligomers upon GTP binding/hydrolysis, but the molecular mechanisms remain elusive. Here, we present crystal structures of C-terminally truncated human GBP5 (hGBP51-486), comprising the large GTPase (LG) and middle (MD) domains, in both its nucleotide-free monomeric and nucleotide-bound dimeric states, together with nucleotide-free full-length human GBP2. Upon GTP-loading, hGBP51-486 forms a closed face-to-face dimer. The MD of hGBP5 undergoes a drastic movement relative to its LG domain and forms extensive interactions with the LG domain and MD of the pairing molecule. Disrupting the MD interface (for hGBP5) or mutating the hinge region (for hGBP2/5) impairs their ability to inhibit HIV-1. Our results point to a GTP-induced dimerization mode that is likely conserved among all GBP members and provide insights into the molecular determinants of their antiviral function. Structural basis for GTP-induced dimerization and antiviral function of guanylate-binding proteins.,Cui W, Braun E, Wang W, Tang J, Zheng Y, Slater B, Li N, Chen C, Liu Q, Wang B, Li X, Duan Y, Xiao Y, Ti R, Hotter D, Ji X, Zhang L, Cui J, Xiong Y, Sauter D, Wang Z, Kirchhoff F, Yang H Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). pii: 2022269118. doi:, 10.1073/pnas.2022269118. PMID:33876762[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
Categories: Homo sapiens | Large Structures | Chen C | Cui W | Ji XY | Slater B | Wang W | Xiong Y | Yang HT