7jzx
From Proteopedia
Cryo-EM structure of CRISPR-Cas surveillance complex with AcrIF7
Structural highlights
FunctionCAS6_PSEAB CRISPR (clustered regularly interspaced short palindromic repeat) is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). Processes pre-crRNA into individual crRNA units. Absolutely required for crRNA production or stability. Upon expression in E.coli endonucleolytically processes pre-crRNA, although disruption and reconstitution experiments indicate that in situ other genes are also required for processing. Yields 5'-hydroxy and 3'-phosphate groups. The Csy ribonucleoprotein complex binds target ssDNA with high affinity but target dsDNA with much lower affinity.[1] [2] [3] Publication Abstract from PubMedCRISPR-Cas systems are adaptive immune systems in bacteria and archaea to defend against mobile genetic elements (MGEs) and have been repurposed as genome editing tools. Anti-CRISPR (Acr) proteins are produced by MGEs to counteract CRISPR-Cas systems and can be used to regulate genome editing by CRISPR techniques. Here, we report the cryo-EM structures of three type I-F Acr proteins, AcrIF4, AcrIF7 and AcrIF14, bound to the type I-F CRISPR-Cas surveillance complex (the Csy complex) from Pseudomonas aeruginosa. AcrIF4 binds to an unprecedented site on the C-terminal helical bundle of Cas8f subunit, precluding conformational changes required for activation of the Csy complex. AcrIF7 mimics the PAM duplex of target DNA and is bound to the N-terminal DNA vise of Cas8f. Two copies of AcrIF14 bind to the thumb domains of Cas7.4f and Cas7.6f, preventing hybridization between target DNA and the crRNA. Our results reveal structural detail of three AcrIF proteins, each binding to a different site on the Csy complex for inhibiting degradation of MGEs. Structural basis for inhibition of the type I-F CRISPR-Cas surveillance complex by AcrIF4, AcrIF7 and AcrIF14.,Gabel C, Li Z, Zhang H, Chang L Nucleic Acids Res. 2021 Jan 11;49(1):584-594. doi: 10.1093/nar/gkaa1199. PMID:33332569[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|