7k7r
From Proteopedia
EBNA1 peptide AA386-405 with Fab MS39p2w174
Structural highlights
FunctionEBNA1_EBVB9 Plays an essential role in replication and partitioning of viral genomic DNA during latent viral infection. During this phase, the circular double-stranded viral DNA undergoes replication once per cell cycle and is efficiently partitioned to the daughter cells. EBNA1 activates the initiation of viral DNA replication through binding to specific sites in the viral latent origin of replication, oriP. Additionally, it governs the segregation of viral episomes by mediating their attachment to host cell metaphase chromosomes. Also activates the transcription of several viral latency genes. Finally, it can counteract the stabilization of host p53/TP53 by host USP7, thereby decreasing apoptosis and increasing host cell survival.[1] Publication Abstract from PubMedMultiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins(1,2). Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear(3). Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM.,Lanz TV, Brewer RC, Ho PP, Moon JS, Jude KM, Fernandez D, Fernandes RA, Gomez AM, Nadj GS, Bartley CM, Schubert RD, Hawes IA, Vazquez SE, Iyer M, Zuchero JB, Teegen B, Dunn JE, Lock CB, Kipp LB, Cotham VC, Ueberheide BM, Aftab BT, Anderson MS, DeRisi JL, Wilson MR, Bashford-Rogers RJM, Platten M, Garcia KC, Steinman L, Robinson WH Nature. 2022 Mar;603(7900):321-327. doi: 10.1038/s41586-022-04432-7. Epub 2022 , Jan 24. PMID:35073561[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations 127 reviews cite this structure No citations found See AlsoReferences
|
|