7kvl

From Proteopedia

Jump to: navigation, search

SARS-CoV-2 Main protease immature form - FMAX Library E01 fragment

Structural highlights

7kvl is a 2 chain structure with sequence from Severe acute respiratory syndrome coronavirus 2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.09Å
Ligands:DMS, PEG, SER, X4P
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

R1AB_SARS2 Multifunctional protein involved in the transcription and replication of viral RNAs. Contains the proteinases responsible for the cleavages of the polyprotein.[UniProtKB:P0C6X7] Inhibits host translation by interacting with the 40S ribosomal subunit. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNAs, targeting them for degradation. Viral mRNAs are not susceptible to nsp1-mediated endonucleolytic RNA cleavage thanks to the presence of a 5'-end leader sequence and are therefore protected from degradation. By suppressing host gene expression, nsp1 facilitates efficient viral gene expression in infected cells and evasion from host immune response.[UniProtKB:P0C6X7] May play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses.[UniProtKB:P0C6X7] Responsible for the cleavages located at the N-terminus of the replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Participates together with nsp4 in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF3. Prevents also host NF-kappa-B signaling.[UniProtKB:P0C6X7] Participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication.[UniProtKB:P0C6X7] Cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN] (PubMed:32198291). Also able to bind an ADP-ribose-1-phosphate (ADRP).[UniProtKB:P0C6X7][1] Plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] May participate in viral replication by acting as a ssRNA-binding protein.[UniProtKB:P0C6X7] Plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore plays an essential role in viral mRNAs cap methylation.[UniProtKB:P0C6X7] Responsible for replication and transcription of the viral RNA genome.[UniProtKB:P0C6X7] Multi-functional protein with a zinc-binding domain in N-terminus displaying RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Activity of helicase is dependent on magnesium.[UniProtKB:P0C6X7] Enzyme possessing two different activities: an exoribonuclease activity acting on both ssRNA and dsRNA in a 3' to 5' direction and a N7-guanine methyltransferase activity. Acts as a proofreading exoribonuclease for RNA replication, thereby lowering The sensitivity of the virus to RNA mutagens.[UniProtKB:P0C6X7] Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond.[UniProtKB:P0C6X7] Methyltransferase that mediates mRNA cap 2'-O-ribose methylation to the 5'-cap structure of viral mRNAs. N7-methyl guanosine cap is a prerequisite for binding of nsp16. Therefore plays an essential role in viral mRNAs cap methylation which is essential to evade immune system.[UniProtKB:P0C6X7]

Publication Abstract from PubMed

SARS-CoV-2 is the causative agent of COVID-19. The dimeric form of the viral M(pro) is responsible for the cleavage of the viral polyprotein in 11 sites, including its own N and C-terminus. The lack of structural information for intermediary forms of M(pro) is a setback for the understanding its self-maturation process. Herein, we used X-ray crystallography combined with biochemical data to characterize multiple forms of SARS-CoV-2 M(pro). For the immature form, we show that extra N-terminal residues caused conformational changes in the positioning of domain-three over the active site, hampering the dimerization and diminishing its activity. We propose that this form preludes the cis and trans-cleavage of N-terminal residues. Using fragment screening, we probe new cavities in this form which can be used to guide therapeutic development. Furthermore, we characterized a serine site-directed mutant of the M(pro) bound to its endogenous N and C-terminal residues during dimeric association stage of the maturation process. We suggest this form is a transitional state during the C-terminal trans-cleavage. This data sheds light in the structural modifications of the SARS-CoV-2 main protease during its self-maturation process.

A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process.,Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, M A Lima G, V D Rosa H, Pereira HD, C M Zeri A, A F Z Nascimento A, C L C Freire M, Fearon D, Douangamath A, von Delft F, Oliva G, Godoy AS J Mol Biol. 2021 Jun 23:167118. doi: 10.1016/j.jmb.2021.167118. PMID:34174328[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

References

  1. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020 Mar 20. pii: science.abb3405. doi: 10.1126/science.abb3405. PMID:32198291 doi:http://dx.doi.org/10.1126/science.abb3405
  2. Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, M A Lima G, V D Rosa H, Pereira HD, C M Zeri A, A F Z Nascimento A, C L C Freire M, Fearon D, Douangamath A, von Delft F, Oliva G, Godoy AS. A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process. J Mol Biol. 2021 Jun 23:167118. doi: 10.1016/j.jmb.2021.167118. PMID:34174328 doi:http://dx.doi.org/10.1016/j.jmb.2021.167118

Contents


PDB ID 7kvl

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools