7kzb

From Proteopedia

Jump to: navigation, search

Potent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1antibodies

Structural highlights

7kzb is a 5 chain structure with sequence from Homo sapiens and Severe acute respiratory syndrome coronavirus 2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.83Å
Ligands:CL, FUC, NAG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SPIKE_SARS2 attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein (PubMed:32142651, PubMed:32075877, PubMed:32155444). Uses also human TMPRSS2 for priming in human lung cells which is an essential step for viral entry (PubMed:32142651). Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.[HAMAP-Rule:MF_04099][1] [2] [3] mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099]

Publication Abstract from PubMed

Antibodies against coronavirus spike protein potently protect against infection and disease, but whether such protection can be extended to variant coronaviruses is unclear. This is exemplified by a set of iconic and well-characterized monoclonal antibodies developed after the 2003 SARS outbreak, including mAbs m396, CR3022, CR3014 and 80R, which potently neutralize SARS-CoV-1, but not SARS-CoV-2. Here, we explore antibody engineering strategies to change and broaden their specificity, enabling nanomolar binding and potent neutralization of SARS-CoV-2. Intriguingly, while many of the matured clones maintained specificity of the parental antibody, new specificities were also observed, which was further confirmed by X-ray crystallography and cryo-electron microscopy, indicating that a limited set of VH antibody domains can give rise to variants targeting diverse epitopes, when paired with a diverse VL repertoire. Our findings open up over 15 years of antibody development efforts against SARS-CoV-1 to the SARS-CoV-2 field and outline general principles for the maturation of antibody specificity against emerging viruses.

Potent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1 antibodies.,Rouet R, Mazigi O, Walker GJ, Langley DB, Sobti M, Schofield P, Lenthall H, Jackson J, Ubiparipovic S, Henry JY, Abayasingam A, Burnett D, Kelleher A, Brink R, Bull RA, Turville S, Stewart AG, Goodnow CC, Rawlinson WD, Christ D MAbs. 2021 Jan-Dec;13(1):1922134. doi: 10.1080/19420862.2021.1922134. PMID:34024246[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Feb 19. pii: science.abb2507. doi: 10.1126/science.abb2507. PMID:32075877 doi:http://dx.doi.org/10.1126/science.abb2507
  2. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020, Mar 5. PMID:32142651 doi:http://dx.doi.org/10.1016/j.cell.2020.02.052
  3. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Mar 6. pii: S0092-8674(20)30262-2. doi: 10.1016/j.cell.2020.02.058. PMID:32155444 doi:http://dx.doi.org/10.1016/j.cell.2020.02.058
  4. Rouet R, Mazigi O, Walker GJ, Langley DB, Sobti M, Schofield P, Lenthall H, Jackson J, Ubiparipovic S, Henry JY, Abayasingam A, Burnett D, Kelleher A, Brink R, Bull RA, Turville S, Stewart AG, Goodnow CC, Rawlinson WD, Christ D. Potent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1 antibodies. MAbs. 2021 Jan-Dec;13(1):1922134. PMID:34024246 doi:10.1080/19420862.2021.1922134

Contents


PDB ID 7kzb

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools