7lbr
From Proteopedia
SARS-CoV-2 papain-like protease (PLpro) bound to inhibitor XR8-89
Structural highlights
FunctionR1A_SARS2 Multifunctional protein involved in the transcription and replication of viral RNAs. Contains the proteinases responsible for the cleavages of the polyprotein.[UniProtKB:P0C6X7] Inhibits host translation by interacting with the 40S ribosomal subunit. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNAs, targeting them for degradation. Viral mRNAs are not susceptible to nsp1-mediated endonucleolytic RNA cleavage thanks to the presence of a 5'-end leader sequence and are therefore protected from degradation. By suppressing host gene expression, nsp1 facilitates efficient viral gene expression in infected cells and evasion from host immune response.[UniProtKB:P0C6X7] May play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses.[UniProtKB:P0C6X7] Responsible for the cleavages located at the N-terminus of the replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Participates together with nsp4 in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF3. Prevents also host NF-kappa-B signaling.[UniProtKB:P0C6X7] Participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication.[UniProtKB:P0C6X7] Cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Also able to bind an ADP-ribose-1-phosphate (ADRP).[UniProtKB:P0C6X7] Plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] May participate in viral replication by acting as a ssRNA-binding protein.[UniProtKB:P0C6X7] Plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore plays an essential role in viral mRNAs cap methylation.[UniProtKB:P0C6X7] Publication Abstract from PubMedAntiviral agents blocking SARS-CoV-2 viral replication are desperately needed to complement vaccination to end the COVID-19 pandemic. Viral replication and assembly are entirely dependent on two viral cysteine proteases: 3C-like protease (3CLpro) and the papain-like protease (PLpro). PLpro also has deubiquitinase (DUB) activity, removing ubiquitin (Ub) and Ub-like modifications from host proteins, disrupting the host immune response. 3CLpro is inhibited by many known cysteine protease inhibitors, whereas PLpro is a relatively unusual cysteine protease, being resistant to blockade by such inhibitors. A high-throughput screen of biased and unbiased libraries gave a low hit rate, identifying only CPI-169 and the positive control, GRL0617, as inhibitors with good potency (IC50 < 10 lower case Greek muM). Analogues of both inhibitors were designed to develop structure-activity relationships; however, without a co-crystal structure of the CPI-169 series, we focused on GRL0617 as a starting point for structure-based drug design, obtaining several co-crystal structures to guide optimization. A series of novel 2-phenylthiophene-based non-covalent SARS-CoV-2 PLpro inhibitors were obtained, culminating in low nanomolar potency. The high potency and slow inhibitor off-rate were rationalized by newly identified ligand interactions with a 'BL2 groove' that is distal from the active site cysteine. Trapping of the conformationally flexible BL2 loop by these inhibitors blocks binding of viral and host protein substrates; however, until now it has not been demonstrated that this mechanism can induce potent and efficacious antiviral activity. In this study, we report that novel PLpro inhibitors have excellent antiviral efficacy and potency against infectious SARS-CoV-2 replication in cell cultures. Together, our data provide structural insights into the design of potent PLpro inhibitors and the first validation that non-covalent inhibitors of SARS-CoV-2 PLpro can block infection of human cells with low micromolar potency. Potent, Novel SARS-CoV-2 PLpro Inhibitors Block Viral Replication in Monkey and Human Cell Cultures.,Shen Z, Ratia K, Cooper L, Kong D, Lee H, Kwon Y, Li Y, Alqarni S, Huang F, Dubrovskyi O, Rong L, Thatcher GR, Xiong R bioRxiv. 2021 Feb 15. doi: 10.1101/2021.02.13.431008. PMID:33594371[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|