7lyl
From Proteopedia
South African (B.1.351) SARS-CoV-2 spike protein variant (S-GSAS-B.1.351) in the RBD-down conformation
Structural highlights
FunctionSPIKE_SARS2 attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein (PubMed:32142651, PubMed:32075877, PubMed:32155444). Uses also human TMPRSS2 for priming in human lung cells which is an essential step for viral entry (PubMed:32142651). Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.[HAMAP-Rule:MF_04099][1] [2] [3] mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099] Publication Abstract from PubMedSARS-CoV-2 variants with multiple spike mutations enable increased transmission and antibody resistance. Here, we combine cryo-EM, binding and computational analyses to study variant spikes, including one that was involved in transmission between minks and humans, and others that originated and spread in human populations. All variants showed increased ACE2 receptor binding and increased propensity for RBD up states. While adaptation to mink resulted in spike destabilization, the B.1.1.7 (UK) spike balanced stabilizing and destabilizing mutations. A local destabilizing effect of the RBD E484K mutation was implicated in resistance of the B.1.1.28/P.1 (Brazil) and B.1.351 (South Africa) variants to neutralizing antibodies. Our studies revealed allosteric effects of mutations and mechanistic differences that drive either inter-species transmission or escape from antibody neutralization. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity.,Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Stalls V, Kopp MF, Manne K, Li D, Wiehe K, Saunders KO, Edwards RJ, Korber B, Haynes BF, Henderson R, Acharya P Science. 2021 Jun 24. pii: science.abi6226. doi: 10.1126/science.abi6226. PMID:34168071[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found References
|
|