7mmo
From Proteopedia
LY-CoV1404 neutralizing antibody against SARS-CoV-2
Structural highlights
FunctionSPIKE_SARS2 attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein (PubMed:32142651, PubMed:32075877, PubMed:32155444). Uses also human TMPRSS2 for priming in human lung cells which is an essential step for viral entry (PubMed:32142651). Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.[HAMAP-Rule:MF_04099][1] [2] [3] mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099] Publication Abstract from PubMedSARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab). LY-CoV1404 potently neutralizes authentic SARS-CoV-2 virus, including the prototype, B.1.1.7, B.1.351 and B.1.617.2). In pseudovirus neutralization studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant and retains binding to spike proteins with a variety of underlying RBD mutations including K417N, L452R, E484K, and N501Y. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved with the exception of N439 and N501. Notably, the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of reactivity to amino acid substitutions present among current VOC together with broad and potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants causing COVID-19. IN BRIEF: LY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and whose epitope is rarely mutated. HIGHLIGHTS: LY-CoV1404 potently neutralizes SARS-CoV-2 authentic virus and known variants of concern including the B.1.1.529 (Omicron), the BA.2 Omicron subvariant, and B.1.617.2 (Delta) variantsNo loss of potency against currently circulating variantsBinding epitope on RBD of SARS-CoV-2 is rarely mutated in GISAID databaseBreadth of neutralizing activity and potency supports clinical development. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants.,Westendorf K, Zentelis S, Wang L, Foster D, Vaillancourt P, Wiggin M, Lovett E, van der Lee R, Hendle J, Pustilnik A, Sauder JM, Kraft L, Hwang Y, Siegel RW, Chen J, Heinz BA, Higgs RE, Kallewaard NL, Jepson K, Goya R, Smith MA, Collins DW, Pellacani D, Xiang P, de Puyraimond V, Ricicova M, Devorkin L, Pritchard C, O'Neill A, Dalal K, Panwar P, Dhupar H, Garces FA, Cohen CA, Dye JM, Huie KE, Badger CV, Kobasa D, Audet J, Freitas JJ, Hassanali S, Hughes I, Munoz L, Palma HC, Ramamurthy B, Cross RW, Geisbert TW, Menacherry V, Lokugamage K, Borisevich V, Lanz I, Anderson L, Sipahimalani P, Corbett KS, Yang ES, Zhang Y, Shi W, Zhou T, Choe M, Misasi J, Kwong PD, Sullivan NJ, Graham BS, Fernandez TL, Hansen CL, Falconer E, Mascola JR, Jones BE, Barnhart BC bioRxiv [Preprint]. 2022 Mar 24:2021.04.30.442182. doi: , 10.1101/2021.04.30.442182. PMID:33972947[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|