7na3
From Proteopedia
HDM2 in complex with compound 62
Structural highlights
DiseaseMDM2_HUMAN Note=Seems to be amplified in certain tumors (including soft tissue sarcomas, osteosarcomas and gliomas). A higher frequency of splice variants lacking p53 binding domain sequences was found in late-stage and high-grade ovarian and bladder carcinomas. Four of the splice variants show loss of p53 binding. FunctionMDM2_HUMAN E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Publication Abstract from PubMedIdentification of low-dose, low-molecular-weight, drug-like inhibitors of protein-protein interactions (PPIs) is a challenging area of research. Despite the challenges, the therapeutic potential of PPI inhibition has driven significant efforts toward this goal. Adding to recent success in this area, we describe herein our efforts to optimize a novel purine carboxylic acid-derived inhibitor of the HDM2-p53 PPI into a series of low-projected dose inhibitors with overall favorable pharmacokinetic and physical properties. Ultimately, a strategy focused on leveraging known binding hot spots coupled with biostructural information to guide the design of conformationally constrained analogs and a focus on efficiency metrics led to the discovery of MK-4688 (compound 56), a highly potent, selective, and low-molecular-weight inhibitor suitable for clinical investigation. Discovery of MK-4688: an Efficient Inhibitor of the HDM2-p53 Protein-Protein Interaction.,Reutershan MH, Machacek MR, Altman MD, Bogen S, Cai M, Cammarano C, Chen D, Christopher M, Cryan J, Daublain P, Fradera X, Geda P, Goldenblatt P, Hill AD, Kemper RA, Kutilek V, Li C, Martinez M, McCoy M, Nair L, Pan W, Thompson CF, Scapin G, Shizuka M, Spatz ML, Steinhuebel D, Sun B, Voss ME, Wang X, Yang L, Yeh TC, Dussault I, Marshall CG, Trotter BW J Med Chem. 2021 Oct 29. doi: 10.1021/acs.jmedchem.1c01524. PMID:34714078[12] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|